计算机应用 ›› 2014, Vol. 34 ›› Issue (12): 3373-3380.

• 网络与通信 • 上一篇    下一篇

802.11n与ZigBee共存:子载波置零多输入多输出物理层模型

赖新宇,赵增华,吴璇璇   

  1. 天津大学 计算机科学与技术学院,天津 300072)
  • 收稿日期:2014-07-15 修回日期:2014-08-28 出版日期:2014-12-01 发布日期:2014-12-31
  • 通讯作者: 赖新宇
  • 作者简介:赖新宇(1989-),男,广西玉林人,硕士研究生,主要研究方向:多输入多输出技术、软件无线电、异构网络共存; 赵增华(1974-),女,河南南乐人,副教授,博士,CCF高级会员,主要研究方向:长距离无线网状网络、无线网络编码、多输入多输出技术、物联网、网络协议和系统设计;吴璇璇(1990-),女,湖南娄底人,硕士研究生,主要研究方向:长距离无线网络编码、异构网络共存。
  • 基金资助:

    国家自然科学基金资助项目

Physical layer model for 802.11n-ZigBee coexistence: subcarrier-nulling multi-input multi-output

LAI Xinyu,ZHAO Zenghua,WU Xuanxuan   

  1. School of Computer Science and Technology, Tianjin University, Tianjin 300072, China
  • Received:2014-07-15 Revised:2014-08-28 Online:2014-12-01 Published:2014-12-31
  • Contact: LAI Xinyu

摘要:

针对802.11n与ZigBee共享ISM频段造成的WiFi与ZigBee信道重叠,进而导致网络间相互干扰使得网络性能下降,以及当前载波侦听多路访问/冲突避免(CSMA/CA)可能导致的频谱资源利用率较低的问题,提出一个采用子载波置零技术的2×2非相干多输入多输出(MIMO)物理层模型。该模型中,为了避免共信道干扰,WiFi发送端在发送数据前首先对其当前使用的信道中可能存在的ZigBee信号进行检测,若检测到ZigBee信号则对已被占用的频谱对应的子载波置零,使用余下频谱不重叠子载波进行通信。接收端对发送端使用的子载波进行识别,并完成后续工作。通过使WiFi与ZigBee信号频谱分离来消除信号间干扰,解决两者共存问题,实现WiFi与ZigBee数据并行传输。在由GNURadio/USRP软件无线电设备和ZigBee节点搭建的实验床上进行的实验结果表明,采用子载波置零技术的2×2非相干MIMO可以获得全带宽发送状态下50%~70%的吞吐量,同时在数据并行传输过程中ZigBee的正确收包百分比达到90%以上。

Abstract:

In view of the problem of a sharp fall on network performance due to network interference caused by channel overlapping aroused by ISM (Industrial Scientific Medical) band shared between WiFi and ZigBee, and severe spectrum underutilization induced by the current CSMA/CA (Carrier Sense Multiple Access with Collision Avoidance) mechanism, a subcarrier-nulling 2×2 noncoherent antenna MIMO (Multi-Input Multi-Output) PHY (Physical Layer) model was proposed in this paper. In this model, to avoid co-channel interference, a WiFi transmitter needs to detect ZigBee signals appearing in its adopted channel before data transmission, and if any, this transmitter will null the subcarriers within the spectrum occupied by ZigBees, and take advantage of the rest subcarriers to transmit its packets. The receiver needs to identify the subcarriers used by the transmitter, and finish the follow-up work. By this means, interference will be eliminated by signal spectrum separation, thus achieving the goal of heterogeneous network coexistence and making parallel data transmission available. The experiments were run on the test bed composed of GNURadio/USRP platform and ZigBee nodes, and the experiment results show that subcarrier-nulling enabled 2×2 noncoherent antenna MIMO to gain 50%-70% throughput of that in the full bandwidth scenario, and during parallel data transmission ZigBee’s valid received packets ratio is at least 90%.

中图分类号: