An image positioning and scaling architecture for mobile video terminals was proposed for freely zooming and viewing video in detail. Then a gesture recognition processing approach was adopted in the architecture. Single-finger dragging and double-finger zooming detection were proposed for the gesture recognition. In addition, an approach to coordinates conversion calculation was proposed with boundary binding of coordinate transformation parameters using crossing boundary detection. Novel video display system was presented which consists of the video decoding, the image rendering and the interaction with synchronization. Finally these parts were concurrently implemented by three threads. The simulation results show that the proposed system obtains real-time image positioning and scaling while the traditional way of video playback is reserved. Interaction response time is controlled within 6ms to eliminate the screen flicker and skipping caused by interaction. Real-time image positioning and scaling of video playback for resources-limited mobile terminals will lead to a wide range of potential applications.
赖春雷 薛荷 周益民. 视频移动终端实时定点与缩放[J]. 计算机应用, 2014, 34(7): 2028-2032.
LAI Chunlei XUE He ZHOU Yimin. Real-time image positioning and scaling for mobile video terminals. Journal of Computer Applications, 2014, 34(7): 2028-2032.
ZHANG H, XU K. Natural user interaction design analysis based on habitual behavior[J]. Journal of Liaoning Institute of Technology: Social Science Edition, 2010, 12(5): 60-61.(张辉, 许坤. 用户习惯性行为下的自然交互设计分析[J]. 辽宁工业大学学报社会科学版, 2010, 12(5): 60-61.)
[2]
QU X, LI A, LU Y. Analysis of mobile Internet users demand trend[J]. Mobile Communications, 2010(21): 68-71.(屈雪莲, 李安英, 陆音. 移动互联网用户需求趋势剖析[J].移动通信, 2010(21): 68-71.)
[3]
LI W. Overview of fine granularity scalability in MPEG-4 video standard[J]. IEEE Transactions on Circuits and Systems for Video Technology, 2001, 11(3): 301-317.
[4]
SCHWARZ H, MARPE D, WIEGAND T. Overview of the scalable video coding extension of the H.264/AVC standard[J]. IEEE Transactions on Circuits and Systems for Video Technology, 2007, 17(9): 1103-1120.
[5]
UGUR K, ANDERSSON K, FULDSETH A, et al. High performance, low complexity video coding and the emerging HEVC standard[J]. IEEE Transactions on Circuits and Systems for Video Technology, 2010, 20(12): 1688-1697.
[6]
ZHOU Y, HOU M, TIAN L. Rate control scheme based on the intra prediction encoding mode: China, CN201110337754.2[P], 2013-09-25.(周益民, 侯孟书, 田玲. 基于帧内预测编码模式的码率控制方法:中国, CN201110337754.2[P], 2013-09-25.)
[7]
ZHOU Y, TIAN L, SUN S. Frame complexity estimation for H.264/AVC rate control[J]. Computer Engineering and Applications, 2009, 45(26): 8-11.(周益民, 田玲, 孙世新.视频图像复杂度估计的H.264/AVC码率控制[J].计算机工程与应用, 2009, 45(26): 8-11.)
[8]
PARK S, LEE Y, LEE J, et al. Quality-adaptive requantization for low-energy MPEG-4 video decoding in mobile devices[J]. IEEE Transactions on Consumer Electronics, 2005, 51(3): 999-1005.
[9]
KIMURA M, IWATA K, MOCHIZUKI S, et al. A full HD multistandard video codec for mobile applications[J]. IEEE Micro, 2009, 29(6): 18-27.
[10]
HU C, REN P, LI W. FFMPEG multimedia system based on Android synchronous transmission algorithm[J]. Computer Technology and Development, 2011, 21(10): 85-87.(胡成, 任平安, 李文莉. 基于Android系统的FFMPEG多媒体同步传输算法研究[J]. 计算机技术与发展, 2011, 21(10): 85-87.)
[11]
HU C, ZHOU T, TANG L. Research on cross-platform video codec based on FFMPEG[J]. Journal of Wuhan University of Technology, 2011, 33(11): 139-142.(胡聪, 周甜, 唐璐丹. 基于FFMPEG的跨平台视频编解码研究[J]. 武汉理工大学学报, 2011, 33(11): 139-142.)
[12]
WANG H, TIAN P. An algorithm of audio-video synchronization based on Android[J]. Industrial Instrumentation and Automation, 2012(4): 23-26.(王辉, 田鹏辉. 一种基于Android的音视频同步算法设计[J]. 工业仪表与自动化装置, 2012(4): 23-26.)
[13]
HE J. Research of the multimedia player in the new generation of the intelligent terminal[D]. Ningbo: Ningbo University, 2012.(何金.新一代智能终端多媒体播放平台的技术研究[D].宁波: 宁波大学, 2012.)
[14]
WANG D, ZHANG M, XIONG Z. Survey on multi-touch research[J]. Application Research of Computers, 2009, 26(7): 2404-2406.(王德鑫, 张茂军, 熊志辉 .多重触控技术研究综述[J]. 计算机应用研究, 2009, 26(7): 2404-2406.)
[15]
WANG X, BAO H. Gesture recognition based on adaptive genetic algorithm[J]. Journal of Computer-Aided Design and Computer Graphics, 2007, 19(8): 1056-1062.(王修晖, 鲍虎军. 基于自适应遗传算法的手势识别[J]. 计算机辅助设计与图形学学报, 2007, 19(8): 1056-1062.)
[16]
LI W, YAO Q, DENG C. Application of the BP neural network based on PSO in dynamic gesture recognition[J]. Computer Engineering and Science, 2011, 33(5): 74-79.(李文生, 姚琼, 邓春健. 粒子群优化神经网络在动态手势识别中的应用[J]. 计算机工程与科学, 2011, 33(5): 74-79.)
[17]
TAN C, XIAO N. Static hand gesture recognition based on improved RCE neural network and RBF neural network[J]. Computer Engineering and Applications, 2011, 47(7): 172-176.(谭昶, 肖南峰. 基于改进RCE和RBF神经网络的静态手势识别[J]. 计算机工程与应用, 2011, 47(7): 172-176.)
[18]
LI W, XIE M, DENG C. Dynamic multi-point gesture recognition based on machine vision[J]. Computer Engineering and Design, 2012, 33(5): 1988-1992.(李文生, 解梅, 邓春健. 基于机器视觉的动态多点手势识别方法[J]. 计算机工程与设计, 2012, 33(5): 1988-1992.)