Method by using time factors in recommender system
FAN Jiabing1,2, WANG Peng3, ZHOU Weibo1,2, YAN Jingjing1,2
1. Chengdu Institute of Computer Application, Chinese Academy of Sciences, Chengdu Sichuan 610041, China;
2. University of Chinese Academy of Sciences, Beijing 100049, China;
3. College of Software Engineering, Chengdu University of Information Technology, Chengdu Sichuan 610225, China
Concerning the problem that traditional recommendation algorithm ignores the time factors, according to the similarity of individuals' short-term behavior, a calculation method of item correlation by using time decay function based on users' interest was proposed. And based on this method, a new item similarity was proposed. At the same time, the TItemRank algorithm was proposed which is an improved ItemRank algorithm by combining with the user interest-based item correlation. The experimental results show that: the improved algorithms have better recommendation effects than classical ones when the recommendation list is small. Especially, when the recommendation list has 20 items, the precision of user interest-based item similarity is 21.9% higher than Cosin similarity and 6.7% higher than Jaccard similarity. Meanwhile, when the recommendation list has 5 items, the precision of TItemRank is 2.9% higher than ItemRank.
范家兵, 王鹏, 周渭博, 燕京京. 在推荐系统中利用时间因素的方法[J]. 计算机应用, 2015, 35(5): 1324-1327.
FAN Jiabing, WANG Peng, ZHOU Weibo, YAN Jingjing. Method by using time factors in recommender system. Journal of Computer Applications, 2015, 35(5): 1324-1327.
[1] LINDEN G, SMITH B, YORK J. Amazon.com recommendations: item-to-item collaborative filtering [J]. IEEE Internet Computing, 2003, 7(1):76-80. [2] ZHANG Y, YUE L, ZHANG Y, et al. Friends recommended method based on common users and similar labels[J]. Journal of Computer Applications, 2013, 33(8):2273-2275.(张怡文, 岳丽华, 张义飞,等. 基于共同用户和相似标签的好友推荐算法[J]. 计算机应用, 2013, 33(8):2273-2275.) [3] SHEN X, DONG Z. A collaborative filtering algorithm reflecting users' interests change[J]. Computer Applications and Software, 2013, 30(6):295-297. (沈西挺, 董智佳. 反映用户兴趣变化的协同过滤算法[J]. 计算机应用与软件, 2013, 30(6):295-297.) [4] JANNACH D, ZANKER M, FELFERNING A, et al. Recommender systems: an introduction[M]. New York: Cambridge University Press, 2011: 13-22. [5] WANG B. Mining of massive datasets[M]. Beijing: Post and Telecom Press, 2012:115-143. (王斌. 大数据:互联网大规模数据挖掘与分布式处理[M]. 北京: 人民邮电出版社, 2012:115-143.) [6] XIANG L, CHEN Y, WANG Y. Recommendation system practice[M]. Beijing: Posts and Telecom Press, 2012:73-77.(项亮, 陈义, 王益. 推荐系统实践[M]. 北京:人民邮电出版社, 2012:73-77.) [7] XING C, GAO F, ZHAN S, et al. A collaborative filtering recommendation algorithm incorporated with user interest change[J]. Journal of Computer Research and Development, 2007, 44(2):296-301.(邢春晓, 高凤荣, 战思南, 等. 适应用户兴趣变化的协同过滤推荐算法[J]. 计算机研究与发展, 2007, 44(2):296-301.) [8] ZHENG X, CAO X. Research on lineal gradual forgetting collaborative filtering algorithm[J]. Computer Engineering, 2007, 33(6):72-73.(郑先荣, 曹先彬. 线性逐步遗忘协同过滤算法的研究[J]. 计算机工程, 2007, 33(6): 72-73.) [9] WANG L, ZHAI Z. Collaborative filtering algorithm based on time weight[J]. Journal of Computer Applications, 2007, 27(8): 2302-2303.(王岚, 翟正军. 基于时间加权的协同过滤算法[J]. 计算机应用, 2007, 27(8):2302-2303.) [10] GORI M, PUCCI A. ItemRank: a random-walk based scoring algorithm for recommender engines[C]// Proceedings of the 20th International Joint Conference on Artifical Intelligence. San Francisco: Morgan Kaufmann Publishers, 2007:2766-2771. [11] SHANG S, KULKANMI S, CUFF P, et al. A random walk based model incorporating social information for recommendations[C]// MLSP2012: Proceedings of the 2012 IEEE International Workshop on Machine Learning for Signal Processing. Piscataway: IEEE, 2012:23-26. [12] GUO Y, BAI S, YANG Z, et al. Analyzing scale of Web logs and mining users' interests[J]. Chinese Journal of Computers, 2005, 28(9):1483-1495.(郭岩, 白硕, 杨志峰, 等. 网络日志规模分析和用户兴趣挖掘[J]. 计算机学报, 2005, 28(9):1483-1495.) [13] HUANG X. Cognitive psychology[M]. Beijing: China Light Industry Press, 2000:70-80. (黄希庭. 认知心理学[M]. 北京: 中国轻工业出版社,2000:70-80.) [14] Recommendation algorithm contest of TianChi big data[EB/OL].[2014-06-20].http://102.alibaba.com/competition/addDiscovery/index.htm.(天池大数据推荐算法比赛[EB/OL].[2014-06-20].http://102.alibaba.com/competition/addDiscovery/index.htm.)