1 |
DEVLIN J, CHANG M-W, LEE K, et al. BERT: pre-training of deep bidirectional transformers for language understanding [C]// Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1(Long and Short Papers). Stroudsburg, PA: Association for Computational Linguistics, 2019: 4171-4186. 10.18653/v1/n18-2
|
2 |
LIU Y, LAPATA M. Text summarization with pretrained encoders [C]// Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing. Stroudsburg, PA: Association for Computational Linguistics, 2019: 3730-3740. 10.18653/v1/d19-1387
|
3 |
LI H, YUAN P, XU S, et al. Aspect-aware multimodal summarization for Chinese e-commerce products [J]. Proceedings of the AAAI Conference on Artificial Intelligence, 2020, 34(5): 8188-8195. 10.1609/aaai.v34i05.6332
|
4 |
DOSOVITSKIY A, BEYER L, KOLESNIKOV A, et al. An image is worth 16x16 words: Transformers for image recognition at scale [C/OL]// Proceedings of the 2021 International Conference on Learning Representations. 2021 [2022-10-01]. .
|
5 |
VASWANI A, SHAZEER N, PARMAR N, et al. Attention is all you need [C]// Proceedings of the 31st International Conference on Neural Information Processing Systems. Red Hook: Curran Associates Inc., 2017: 6000-6010.
|
6 |
ZADEH A, CHEN M, PORIA S, et al. Tensor fusion network for multimodal sentiment analysis [C]// Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing. Stroudsburg, PA: Association for Computational Linguistics, 2017: 1103-1114. 10.18653/v1/d17-1115
|
7 |
SEE A, LIU P J, MANNING C D. Get to the point: Summarization with pointer-generator networks [C]// Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Stroudsburg, PA: Association for Computational Linguistics, 2017: 1073-1083. 10.18653/v1/p17-1099
|
8 |
张龙凯,王厚峰.文本摘要问题中的句子抽取方法研究[J].中文信息学报, 2012, 26(2): 97-101. 10.3969/j.issn.1003-0077.2012.02.018
|
|
ZHANG L K, WANG H F. Research on sentence extraction in text summarization [J]. Journal of Chinese Information Processing, 2012, 26(2): 97-101. 10.3969/j.issn.1003-0077.2012.02.018
|
9 |
ZHOU Q, WEI F, ZHOU M. At which level should we extract? An empirical analysis on extractive document summarization [C]// Proceedings of the 28th International Conference on Computational Linguistics. Stroudsburg, PA: Association for Computational Linguistics, 2020: 5617-5628. 10.18653/v1/2020.coling-main.492
|
10 |
NALLAPATI R, ZHAI F, ZHOU B. SummaRuNNer: a recurrent neural network based sequence model for extractive summarization of documents [C]// Proceedings of the 31st AAAI Conference on Artificial Intelligence. Palo Alto, CA: AAAI Press, 2017: 3075-3081. 10.1609/aaai.v31i1.10958
|
11 |
LEWIS M, LIU Y, GOYAL N, et al. BART: denoising sequence-to-sequence pre-training for natural language generation, translation, and comprehension [C]// Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Stroudsburg, PA: Association for Computational Linguistics, 2020: 7871-7880. 10.18653/v1/2020.acl-main.703
|
12 |
ZHONG M, LIU P, WANG D, et al. Searching for effective neural extractive summarization: What works and what’s next [C]// Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Stroudsburg, PA: Association for Computational Linguistics, 2019: 1049-1058. 10.18653/v1/p19-1100
|
13 |
SINHA K, JIA R, HUPKES D, et al. Masked language modeling and the distributional hypothesis: Order word matters pre-training for little [C]// Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing. Stroudsburg, PA: Association for Computational Linguistics, 2021: 2888-2913. 10.18653/v1/2021.emnlp-main.230
|
14 |
DAULTANI V, NIO L, Y-J CHUNG. Unsupervised extractive summarization for product description using coverage maximization with attribute concept [C]// Proceedings of the 2019 IEEE 13th International Conference on Semantic Computing. Piscataway: IEEE, 2019: 114-117. 10.1109/icosc.2019.8665503
|
15 |
CHEN Q, LIN J, ZHANG Y, et al. Towards knowledge-based personalized product description generation in e-commerce [C]// Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining. Stroudsburg, PA: Association for Computational Linguistics, 2019: 3040-3050. 10.1145/3292500.3330725
|
16 |
YANG M, QU Q, SHEN Y, et al. Aspect and sentiment aware abstractive review summarization [C]// Proceedings of the 27th International Conference on Computational Linguistics. Stroudsburg, PA: Association for Computational Linguistics, 2018: 1110-1120. 10.1145/3269206.3269273
|
17 |
XIAO J, MUNRO R. Text summarization of product titles [C/OL]// Proceedings of the 2019 SIGIR Workshop on eCommerce. Paris, France: CEUR-WS, 2019 [2022-12-01]. .
|
18 |
KHATRI C, SINGH G, PARIKH N. Abstractive and extractive text summarization using document context vector and recurrent neural networks [EB/OL]// (2018) [2022-10-01]. .
|
19 |
LI H, ZHU J, MA C, et al. Multi-modal summarization for asynchronous collection of text, image, audio and video [C]// Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing. Stroudsburg, PA: Association for Computational Linguistics, 2017: 1092-1102. 10.18653/v1/d17-1114
|
20 |
ZHU J, LI H, LIU T, et al. MSMO: Multimodal summarization with multimodal output [C]// Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Stroudsburg, PA: Association for Computational Linguistics, 2018: 4154-4164. 10.18653/v1/d18-1448
|
21 |
ZHU J, ZHOU Y, ZHANG J, et al. Multimodal summarization with guidance of multimodal reference [J]. Proceedings of the AAAI Conference on Artificial Intelligence, 2020, 34(5): 9749-9756. 10.1609/aaai.v34i05.6525
|
22 |
LI H, ZHU J, LIU T, et al. Multi-modal sentence summarization with modality attention and image filtering [C]// Proceedings of the Twenty-Seventh International Joint Conference on Artificial Intelligence. Palo Alto, CA: AAAI Press, 2018: 4152-4158. 10.24963/ijcai.2018/577
|
23 |
LIU Z, SHEN Y. Efficient low-rank multimodal fusion with modality-specific factors [C]// Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Long Papers). Stroudsburg, PA: Association for Computational Linguistics, 2018: 2247-2256. 10.18653/v1/p18-1209
|
24 |
LIN C-Y, HOVY E. Automatic evaluation of summaries using N-gram co-occurrence statistics [C]// Proceedings of the 2003 Human Language Technology Conference of the North American Chapter of the Association for Computational Linguistics. Stroudsburg: Association for Computational Linguistics, 2003: 150-157. 10.3115/1073445.1073465
|
25 |
MIHALCEA R, TARAU P. TextRank: Bringing order into texts [C]// Proceedings of the 2004 Conference on Empirical Methods in Natural Language Processing. Stroudsburg, PA: Association for Computational Linguistics, 2004: 404-411. 10.3115/1220355.1220517
|
26 |
PAGE L, BRIN S, MOTWANI R, et al. The PageRank citation ranking: bringing order to the Web [C]// Proceedings of the 7th International World Wide Web Conference. Republic and Canton of Geneva: International World Wide Web Conferences Steering Committee, 1998: 161-172.
|