Journal of Computer Applications ›› 2019, Vol. 39 ›› Issue (2): 446-452.DOI: 10.11772/j.issn.1001-9081.2018061399

Previous Articles     Next Articles

5G network slicing function migration strategy based on security threat prediction

HE Zanyuan, WANG Kai, NIU Ben, YOU Wei, TANG Hongbo   

  1. National Digital Switching System Engineering and Technological R & D Center, Zhengzhou Henan 450002, China
  • Received:2018-07-05 Revised:2018-09-13 Online:2019-02-10 Published:2019-02-15
  • Supported by:
    This work is partially supported by the National Key Research and Development Program (2016YFB0801605), the Program of National Natural Science Foundation of Innovative Research Groups (61521003).


何赞园, 王凯, 牛犇, 游伟, 汤红波   

  1. 国家数字交换系统工程技术研究中心, 郑州 450002
  • 通讯作者: 何赞园
  • 作者简介:何赞园(1975-)男,河南灵宝人,副研究员,硕士,主要研究方向:网络空间安全;王凯(1980-)男,河南南阳人,副研究员,博士研究生,主要研究方向:网络空间安全;牛犇(1992-),男,内蒙古呼和浩特人,硕士研究生,主要研究方向:5G网络安全、网络功能虚拟化;游伟(1984-),男,江西宜春人,讲师,博士,主要研究方向:密码学、5G网络安全;汤红波(1968-)男,湖北孝感人,教授,博士生导师,硕士,主要研究方向:移动通信网络、新型网络体系结构。
  • 基金资助:

Abstract: With the development of virtualization technology, co-resident attack becomes a common means to steal sensitive information from users. Aiming at the hysteresis of existing virtual machine dynamic migration method reacting to co-resident attacks, a virtual network function migration strategy based on security threat prediction in the context of 5G network slicing was proposed. Firstly, network slicing operation security was modeled based on Hidden Markov Model (HMM), and the network security threats were predicted by multi-source heterogeneous data. Then according to the security prediction results, the migration cost was minimized by adopting the corresponding virtual network function migration strategy. Simulation experimental results show that the proposed strategy can effectively predict the security threats and effectively reduce the migration overhead and information leakage time by using HMM, which has a better defense effect against co-resident attack.

Key words: network slicing, security threat, migration, co-resident attack

摘要: 随着虚拟化技术的发展,同驻攻击成为窃取用户敏感信息的重要攻击手段。针对现有虚拟机动态迁移方法对同驻攻击反应的滞后性,在5G网络切片背景下,提出了一种基于安全威胁预测的虚拟网络功能迁移策略。首先,通过隐马尔可夫模型(HMM)对网络切片运行安全进行建模,利用多源异构数据信息对网络安全威胁进行威胁预测;然后,根据安全预测结果,采用相应的虚拟网络功能迁移策略迁移以使迁移开销最小。仿真实验结果表明:利用HMM能对安全威胁进行有效的预测,同时该迁移策略能够有效减少迁移开销与信息泄漏时间,具有较好的同驻攻击防御效果。

关键词: 网络切片, 安全威胁, 迁移, 同驻攻击

CLC Number: