A new Maximum Power Point Tracking (MPPT) method, based on Self-Adaptive Particle Swarm Optimization (SAPSO), was proposed to address the energy storage challenge in engine tandem composite turbine power generation systems. A Hybrid Energy Storage System (HESS) was introduced to augment the power capture capability of the generation system and replace single battery storage, achieving efficient and stable electrical energy storage. A control simulation model of energy storage optimization based on tandem composite turbine power generation was established using Matlab/Simulink software. The power tracking performance for various control methods and the energy storage characteristics of hybrid energy storage systems were compared and analyzed under predetermined operating conditions. Simulation results reveal that the proposed SAPSO-MPPT method outperforms the conventional P&O (Perturbation and Observation) control method, increasing power generation by 190 W and reducing response time by 0.15 s. Additionally, HESS could effectively track the demand power on the busbar, achieving power recovery efficiency of 95.3% . Finally, a test platform for the tandem composite turbine power generation system was developed using a modified Y24 engine bench to validate the fuel-saving potential of the proposed energy storage optimized control strategy. The test findings indicate that the suggested SAPSO-MPPT+HESS energy storage optimization strategy improves energy recovery efficiency by 0.53 percentage points compared to the original engine.
Serving as the bridge that links detection and containment, automatic signature extraction has played an important role in anti-worm. Traditional Internet worm signature extraction algorithms were introduced. Based on the analysis of their mechanisms and major defections, an extraction algorithm based on common feature set was presented. It supported low complexity extraction and optimization, as well as the tradeoff between sensitivity and specialization, and had remarkable superiority in dealing with background noise and cross infection.