%0 Journal Article %A LI Meng %A ZHAN Yi %T Variable exponent variational model for image interpolation %D 2017 %R 10.11772/j.issn.1001-9081.2017.07.2067 %J Journal of Computer Applications %P 2067-2070 %V 37 %N 7 %X To eliminate the zigzagging and blocky effects in homogeneous areas in an interpolated image, a variable exponent variational method was proposed for image interpolation. An exponent function with diffusion characteristic of image interpolution was introduced by analyzing the diffusion characteristic of variable exponent variational model. Two parameters in the exponent function act on interpolation: the one controlled the intensity of diffusion which eliminated the width of image edges while the other controlled the intensity of smoothness which retained the fine textures in the image. The new variable exponent variatonal model made the Total Variation (TV) variational diffuse along image contours and the heat diffusion on smooth areas. The numerical experiment results on real images show that image interpolated by the proposed method has better interpolated edges, especially for fine textures. Compared to the method proposed by Chen et al. (CHEN Y M, LEVINE S, RAO M. Variable exponent, linear growth functionals in image restoration. SIAM Journal on Applied Mathematics, 2006, 66(4): 1383-1406) and robust soft-decision interpolation method, the visual improvement is prominent for retaining fine textures, and the Mean Structural SIMilarity (MSSIM) is increased by 0.03 in average. The proposed model is helpful to further study variable exponent variational model for specifical image processing and worthy to practical applications such as image network communication and print. %U http://www.joca.cn/EN/10.11772/j.issn.1001-9081.2017.07.2067