%0 Journal Article %A WANG Shihui %A YANG Li %A ZHU Bo %T Point-of-interest recommendation algorithm combing dynamic and static preferences %D 2021 %R 10.11772/j.issn.1001-9081.2020050677 %J Journal of Computer Applications %P 398-406 %V 41 %N 2 %X Since most existing Point-Of-Interest (POI) recommendation algorithms ignore the complexity of the modeling of the fusion of user dynamic and static preferences, a POI recommendation algorithm called CLSR (Combing Long Short Recommendation) was proposed that combined complex dynamic user preferences and general static user preferences. Firstly, in the process of modeling complex dynamic preferences, a hybrid neural network was designed based on the user's check-in behaviors and the skip behaviors in check-in behaviors to achieve the modeling of complex dynamic interests of the user. Secondly, in the process of general static preference modeling, a high-level attention network was used to learn the complex interactions between the user and POIs. Thirdly, a multi-layer neural network was used to further learn and express the above dynamic preferences and static preferences. Finally, a unified POI recommendation framework was used to integrate the preferences. Experimental results on real datasets show that, compared with FPMC-LR (Factorizing Personalized Markov Chain and Localized Region), PRME (Personalized Ranking Metric Embedding), Rank-GeoFM (Ranking based Geographical Factorization Method) and TMCA (Temporal and Multi-level Context Attention), CLSR has the performance greatly improved, and compared to the optimal TMCA among the comparison methods, the proposed algorithm has the precision, recall and normalized Discounted Cumulative Gain (nDCG) increased by 5.8%, 5.1%, and 7.2% on Foursquare dataset, and 7.3%, 10.2%, and 6.3% on Gowalla dataset. It can be seen that CLSR algorithm can effectively improve the results of POI recommendation. %U http://www.joca.cn/EN/10.11772/j.issn.1001-9081.2020050677