%0 Journal Article %A LI Zhiyao %A WANG Kun %A ZHANG Linfa %A ZHANG Yufeng %T Medical image fusion with intuitionistic fuzzy set and intensity enhancement %D 2021 %R 10.11772/j.issn.1001-9081.2020101539 %J Journal of Computer Applications %P 2082-2091 %V 41 %N 7 %X Image fusion technology plays an important role in computer-aided diagnosis. Detail extraction and energy preservation are two key issues in image fusion, and the traditional fusion methods address them simultaneously by designing the fusion method. However, it tends to cause information loss or insufficient energy preservation. In view of this, a fusion method was proposed to solve the problems of detail extraction and energy preservation separately. The first part of the method aimed at detail extraction. Firstly, the Non-Subsampled Shearlet Transform (NSST) was used to divide the source image into low-frequency and high-frequency subbands. Then, an improved energy-based fusion rule was used to fuse the low-frequency subbands, and an strategy based on the intuitionistic fuzzy set theory was proposed for the fusion of the high-frequency subbands. Finally, the inverse NSST was employed to reconstruct the image. In the second part, an intensity enhancement method was proposed for energy preservation. The proposed method was verified on 43 groups of images and compared with other eight fusion methods such as Principal Component Analysis (PCA) and Local Laplacian Filtering (LLF). The fusion results on two different categories of medical image fusion (Magnetic Resonance Imaging (MRI) and Positron Emission computed Tomography (PET), MRI and Single-Photon Emission Computed Tomography (SPECT)) show that the proposed method can obtain more competitive performance on both visual quality and objective evaluation indicators including Mutual Information (MI), Spatial Frequency (SF), Q value, Average Gradient (AG), Entropy of Information (EI), and Standard Deviation (SD), and can improve the quality of medical image fusion. %U http://www.joca.cn/EN/10.11772/j.issn.1001-9081.2020101539