%0 Journal Article
%A HU Qianqian
%A LI Kairong
%A LIU Shuang
%A TANG Yiyuan
%T Improved ant colony optimization algorithm for path planning based on turning angle constraint
%D 2021
%R 10.11772/j.issn.1001-9081.2020111713
%J Journal of Computer Applications
%P 2560-2568
%V 41
%N 9
%X Concerning the problems that basic Ant Colony Optimization (ACO) is easy to fall into the local optimum, and has too long path and excessive turning angles during path search, an improved ACO algorithm based on turning angle constraint was proposed. Firstly, the initial pheromone concentration of the area between the starting point and the target point was enhanced to avoid the initial blind search. Then, the A^{*} algorithm's evaluation function and the turning angle constraint factor were added to the heuristic function. In this way, the node with the shortest path length and least number of turns was able to be selected at the next step. Finally, the distribution principle of wolf pack algorithm was introduced in the pheromone updating part to enhance the influence of high-quality population. At the same time, the Max and Min Ant System (MMAS) algorithm was used to limit the pheromone concentration to avoid the algorithm being trapped into the local optimum. Matlab simulation showed that compared with the traditional ACO, the improved algorithm was able to shorten the planned path length by 13.7%, reduce the number of turns by 64.3% and decrease the accumulated turning angle by 76.7%. Experimental results show that the improved ACO algorithm can effectively solve the global path planning problem and avoid the excessive energy loss of mobile robots.
%U http://www.joca.cn/EN/10.11772/j.issn.1001-9081.2020111713