[1] THALMIC LABS. Myo user guide[EB/OL].[2015-12-26]. https://developer.thalmic.com/downloads. [2] WANG J S, HSU Y L, LIU J N. An inertial-measurement-unit-based pen with a trajectory reconstruction algorithm and its applications[J]. IEEE Transactions on Industrial Electronics, 2010, 57(10):3508-3521. [3] HUANG G, ZHANG D, ZHENG X, et al. An EMG-based handwriting recognition through dynamic time warping[C]//Proceedings of the 2010 Annual International Conference of the IEEE Engineering in Medicine and Biology. Piscataway, NJ:IEEE, 2010:4902-4905. [4] WU J, TIAN Z, SUN L, et al. Real-time American sign language recognition using wrist-worn motion and surface EMG sensors[C]//Proceedings of the 2015 IEEE 12th International Conference on Wearable and Implantable Body Sensor Networks. Piscataway, NJ:IEEE, 2015:1-6. [5] WEI S, CHEN X, YANG X, et al. A component-based vocabulary-extensible sign language gesture recognition framework[J]. Sensors, 2016, 16(4):556. [6] HSU Y L, CHU C L, TSAI Y J, et al. An inertial pen with dynamic time warping recognizer for handwriting and gesture recognition[J]. IEEE Sensors Journal, 2014, 15(1):154-163. [7] AKL A, CHEN F, VALAEE S. A novel accelerometer-based gesture recognition system[J]. IEEE Transactions on Signal Processing, 2011, 59(12):6197-6205. [8] BOYALI A, HASHIMOTO N. Spectral collaborative representation based classification for hand gestures recognition on electromyography signals[J]. Biomedical Signal Processing and Control, 2016, 24:11-18. [9] LINDERMAN M, LEBEDEV M A, ERLICHMAN J S. Recognition of handwriting from electromyography[J]. PLOS One, 2009, 4(8):e6791. [10] KIM S, PARK G, YIM S, et al. Gesture-recognizing hand-held interface with vibrotactile feedback for 3D interaction[J]. IEEE Transactions on Consumer Electronics, 2009, 55(3):1169-1177. [11] WANG J S. CHUANG F C. An accelerometer-based digital pen with a trajectory recognition algorithm for handwritten digit and gesture recognition[J]. IEEE Transactions on Industrial Electronics, 2012, 59(7):2998-3007. [12] WANG H, LI Z. Accelerometer-based gesture recognition using dynamic time warping and sparse representation[J]. Multimedia Tools and Applications, 2016, 75(14):8637-8655. [13] GUPTA H P, CHUDGAR H S, MUKHERJEE S, et al. A continuous hand gestures recognition technique for human-machine interaction using accelerometer and gyroscope sensor[J]. IEEE Sensors Journal, 2016, 16(16):6425-6432. [14] CHANG W, DAI L, SHENG S, et al. A hierarchical hand motions recognition method based on IMU and sEMG sensors[C]//Proceedings of the 2015 IEEE International Conference on Robotics and Biomimetics. Piscataway, NJ:IEEE, 2015:1024-1029. [15] LI Y, CHEN X, ZHANG X, et al. A sign-component-based framework for Chinese sign language recognition using accelerometer and sEMG data[J]. IEEE Transactions on Biomedical Engineering, 2012, 59(10):2695-2704. [16] GEORGI M,AMMA C, SCHULTZ T. Fusion and comparison of IMU and EMG signals for wearable gesture recognition[C]//Biomedical Engineering System and Technology, CCIS 574. Berlin:Springer, 2015:308-323. [17] WRIGHT J, YANG A Y, GANESH A, et al. Robust face recognition via sparse representation[J]. IEEE Transactions on Pattern Analysis & Machine Intelligence, 2009, 31(2):210-227. [18] ZHANG L, YANG M, FENG X, et al. Collaborative representation based classification for face recognition[EB/OL].[2016-11-20]. https://www.researchgate.net/publication/223466657_Collaborative_Representation_based_Classification_for_Face_Recognition. [19] 刘敬伟,徐美芝,郑忠国,等.基于DTW的语音识别和说话人识别特征选择[J].模式识别与人工智能,2005,18(1):4-8.(LIU J W, XU M Z, ZHENG Z G, et al. DTW-based feature selection for speech recognition and speaker recognition[J]. Pattern Recognition and Artificial Intelligence, 2005, 18(1):50-54. [20] LOU Y, AO H, DONG Y. Improvement of Dynamic Time Warping (DTW) algorithm[C]//Proceedings of the 201514th International Symposium on Distributed Computing and Applications for Business Engineering and Science. Washington, DC:IEEE Computer Society, 2015:384-387. |