1 黎健成,袁春,宋友.基于卷积神经网络的多标签图像自动标注[J].计算机科学,2016,43(7):41-45. LIJ C, YUANC, SONGY. Multi-label images annotation based on convolutional neural network [J]. Computer Science, 2016, 43(7): 41-45.
2 吴伟,聂建云,高光来.一种基于改进的支持向量机多分类器图像标注方法[J].计算机工程与科学,2015,37(7):1338-1343. WUW, NIEJ Y, GAOG L. Improved SVM multiple classifiers for image annotation [J]. Computer Engineering and Science, 2015, 37(7): 1338-1343.
3 臧淼,徐惠民,张永梅.基于距离约束稀疏/组稀疏编码的自动图像标注[J].四川大学学报(工程科学版),2016,48(5):78-83. ZANGM, XUH M, ZHANGY M. Distance constraint sparse/group sparse coding for automatic image labeling [J]. Journal of Sichuan University (Engineering Science Edition), 2016, 48(5): 78-83.
4 杨晓玲,李志清,刘雨桐.基于多标签判别字典学习的图像自动标注[J].计算机应用,2018,38(5):1294-1298,1303. YANGX L, LIZ Q, LIUY T. Automatic image annotation based on multi-label discriminative dictionary learning [J]. Journal of Computer Applications, 2018, 38(5): 1294-1298, 1303.
5 张华忠,侯进.基于决策树C4.5集成算法的图像自动标注[J].计算机应用研究,2018,35(7):2222-2224. ZHANGH Z, HOUJ. Image annotation based on decision tree C4.5 ensemble algorithm [J]. Application Research of Computers, 2018, 35(7): 2222-2224.
6 READJ, PEREZ-CRUZF. Deep learning for multi-label classification [J]. Machine Learning, 2014, 85(3): 333-359.
7 WUF, WANGZ, ZHANGZ, et al. Weakly semi-supervised deep learning for multi-label image annotation [J]. IEEE Transactions on Big Data, 2015, 1(3): 109-122.
8 HINTONG E. A practical guide to training restricted Boltzmann machines [J]. Momentum, 2010, 9(1): 926-947.
9 柯逍,周铭柯,牛玉贞.融合深度特征和语义邻域的自动图像标注[J].模式识别与人工智能,2017,30(3):193-203. KEX, ZHOUM K, NIUY Z. Automatic image annotation combining semantic neighbors and deep features [J]. Pattern Recognition and Artificial Intelligence, 2017, 30(3): 193-203.
10 周铭柯,柯逍,杜明智.基于数据均衡的增进式深度自动图像标注[J].软件学报,2017,28(7):1862-1880. ZHOUM K, KEX, DUM Z. Enhanced deep automatic image annotation based on data equalization [J]. Journal of Software, 2017, 28(7): 1862-1880.
11 张蕾,蔡明.融合卷积神经网络与主题模型的图像标注[J].激光与光电子学进展,2019,56(20):201004-1-201004-7 ZHANG L,CAI M.Image annotation based on convolutional neural network and topic model [J]. Laser and Optoelectronics Progress, 2019, 56(20): 201004-1-201004-7.
12 黄冬梅,许琼琼,贺琪,等.融合多特征的深度学习标注方法[J].计算机工程与应用,2018,54(1):224-228. HUANGD M, XUQ Q, HEQ, et al. Multi-features fusion for image auto-annotation based on DBN model [J]. Computer Engineering and Applications, 2018, 54(1): 224-228.
13 杨阳,张文生,杨雪冰.基于Dropout深度网络的两步图像标注算法[J].计算机科学与探索,2015,9(12):1494-1505. YANGY, ZHANGW S, YANGX B. Two steps images annotation algorithm based on deep network with Dropout [J]. Journal of Frontiers of Computer Science and Technology, 2015, 9(12): 1494-1505.
14 KRIZHEVSKYA, SUTSKEVERI, HINTONG E. ImageNet classification with deep convolutional neural networks [C]// Proceedings of the 25th International Conference on Neural Information Processing Systems. Red Hook: Curran Associates Inc., 2012: 1097-1105.
15 HUBELD H, WIESELT N. Receptive fields, binocular interaction and functional architecture in the cat’s visual cortex [J]. The Journal of Physiology, 1962, 160(1): 106-154.
16 FUKUSHIMAK. Neocognitron: a self-organizing neural network model for a mechanism of pattern recognition unaffected by shift in position [J]. Biological Cybernetics, 1980, 36(4): 193-202.
17 LECUNY, BOTTOUL, BENGIOY, et al. Gradient-based learning applied to document recognition [J]. Proceedings of the IEEE,1998, 86(11): 2278-2324.
18 高耀东,侯凌燕,杨大利.基于多标签学习的卷积神经网络的图像标注方法[J].计算机应用,2017,37(1):228-232. GAOY D, HOUL Y, YANGD L. Automatic image annotation method using multi-label learning convolutional neural network [J]. Journal of Computer Applications, 2017, 37(1): 228-232.
19 LOFFES, SZEGEDYC. Batch normalization: accelerating deep network training by reducing internal covariate shift [C]// Proceedings of the 32nd International Conference on Machine Learning. New York: ACM, 2015: 448-456.
20 ZHANGM, ZHOUZ. ML-KNN: a lazy learning approach image to multi-label learning [J]. Pattern Recognition, 2007, 40(7): 2038-2048.
21 ELISSEEFFA, WESTONJ. A kernel method for multi-labelled classification[C]// Proceedings of the 14th International Conference on Neural Information Processing Systems. Cambridge: MIT Press, 2001:681-687.
22 DE COMITéF, GILLERONR, TOMMASIM. Learning multi-label alternating decision tree from texts and data [C]// Proceedings of the 2003 International Workshop on Machine Learning and Data Mining in Pattern Recognition, LNCS 2734 . Berlin: Springer, 2003:35-49.
23 MURTHYV N, MAJIS, MANMATHAR. Automatic image annotation using deep learning representations [C]// Proceedings of the 5th ACM International Conference on Multimedia Retrieval. New York: ACM, 2015: 603-606. |