《计算机应用》唯一官方网站

• •    下一篇

基于半监督和多尺度级联注意力的超声颈动脉斑块分割算法

李晨倩1,刘俊2   

  1. 1. Wuhan University of Science and Technology, Wuhan, China
    2. 武汉科技大学
  • 收稿日期:2023-09-05 修回日期:2023-10-16 发布日期:2023-12-18 出版日期:2023-12-18
  • 通讯作者: 李晨倩

Ultrasound carotid plaque segmentation method based on semi-supervision and multi-scale cascaded attention

  • Received:2023-09-05 Revised:2023-10-16 Online:2023-12-18 Published:2023-12-18

摘要: 摘 要: 从超声图像中分割颈动脉粥样硬化斑块对于缺血性卒中的诊断和早期预防很有价值。由于超声图像具有噪声强、质量低和边界模糊等特征,获取可靠的注释非常耗时且费力。针对这些问题,首先,提出不确定性校正金字塔一致性(Uncertainty Rectified Pyramid Consistency,URPC)的半监督分割方法,该方法充分利用未标记数据训练模型,通过减小各尺度的预测与其平均值之间的差异来计算损失。然后针对斑块区域经常模糊的问题,提出一种基于边缘检测的双编码器结构,利用边缘检测编码器辅助超声斑块图像特征编码器充分获取边缘信息。另外,超声图像中的斑块形状也是不规则的,基于此,设计了一个多尺度融合模块(multi-scale fusion module,MSFM),通过自适应融合多尺度特征来改善提取不规则形状斑块的结果, 并结合一个级联通道空间注意力(cascaded channel spatial attention,CCSA))模块来更好地关注斑块区域。最后,在超声颈动脉斑块图像数据集上对该方法进行了评估,实验结果验证了该方法在该数据集上的Dice指标的结果为81%,比循环原型一致性学习(CPCL)方法得出的次优结果提高了1.8个百分点,因此实验验证了该方法的有效性。

关键词: 关键词: 颈动脉斑块分割, 半监督, 双编码器, 多尺度融合, 级联通道空间注意力

Abstract: Abstract: Segmenting carotid atherosclerotic plaques from ultrasound images is valuable for the diagnosis and early prevention of ischemic stroke. However, ultrasound images often suffer from strong noise, low quality, and blurry boundaries, making reliable annotation time-consuming and labor-intensive. To address these issues, this paper proposes a semi-supervised segmentation method called Uncertainty Rectified Pyramid Consistency (URPC) that utilizes unlabeled data to train the model. The URPC method calculates the loss by minimizing the difference between the predictions at different scales and their average. Then, to tackle the issue of frequently blurry plaque regions, a dual-encoder structure based on edge detection is introduced to assist the feature encoder in capturing edge information from ultrasound plaque images. Moreover, as plaque shapes in ultrasound images are often irregular, a multi-scale fusion module (MSFM) is designed to adaptively fuse multi-scale features and improve the extraction of irregular-shaped plaques. A cascaded channel spatial attention (CCSA) module is also incorporated to better focus on the plaque regions. Finally, the proposed method is evaluated on a dataset of ultrasound carotid plaque images. The experimental results demonstrate that the proposed method achieves a Dice score of 81% on the private dataset, which is 1.8 percentage points higher than the suboptimal results obtained by the Cycle-Consistent Prototype Consistency Learning (CPCL) method. Thus, the effectiveness of the proposed method is validated.

Key words: Keywords: carotid plaques segmentation, semi-supervised, dual encoder, multi-scale fusion, cascaded channel spatial attention

中图分类号: