[1] 宋迪,张东波,刘霞.基于Gabor和纹理抑制的手机配件划痕检测[J].计算机工程,2014,40(9):1-5.(SONG D, ZHANG D B, LIU X. Scratch detection for mobile phone accessories based on Gabor and texture suppression[J]. Computer Engineering, 2014, 40(9):1-5.)
[2] 韩芳芳,段发阶,张宝峰,等.单线阵CCD系统的表面凹坑缺陷检测方法[J].哈尔滨工业大学学报,2012,44(4):116-120.(HAN F F, DUAN F J, ZHANG B F, et al. Study and modeling for surface pit defect detection based on linear array CCD system[J]. Journal of Harbin Institute of Technology, 2012,44(4):116-120.)
[3] 崔炽标,李阳,毛霆,等.基于预处理与卷积神经网络的塑件划痕检测[J].模具工业,2017,43(9):1-6.(CUI Z B, LI Y, MAO T, et al. Scratch detection of plastics based on preprocessing and convolutional neural network[J]. Die and Mould Industry, 2017,43(9):1-6.)
[4] 李克斌,余厚云,周申江.基于形态学特征的机械零件表面划痕检测[J].光学学报,2018,38(8):815027-1-815027-7.(LI K B, YU H Y, ZHOU S J. Scratch detection for the surface of mechanical parts based on morphological features[J]. Acta Optica Sinica, 2018,38(8):815027-1-815027-7.)
[5] 汤勃,孔建益,伍世虔.机器视觉表面缺陷检测综述[J].中国图象图形学报,2017,22(12):1640-1663.(TANG B, KONG J Y, WU S Q. Review of surface defect detection based on machine vision[J]. Journal of Image and Graphics, 2017,22(12):1640-1663.)
[6] 胡文瑾,李战明,刘仲民.一种基于小波分析的唐卡图像划痕检测[J].光学技术,2012,38(6):751-755.(HU W J, LI Z M, LIU Z M. Scratch detection algorithm based on wavelet analysis for Thangka image[J]. Optical Technique, 2012,38(6):751-755.)
[7] 周鹏,徐科,刘顺华.基于剪切波和小波特征融合的金属表面缺陷识别方法[J].机械工程学报,2015,51(6):98-103.(ZHOU P, XU K, LIU S H. Surface defect recognition for metals based on feature fusion of shearlets and wavelets[J]. Journal of Mechanical Engineering, 2015,51(6):98-103.)
[8] 马云鹏,李庆武,何飞佳,等.金属表面缺陷自适应分割算法[J].仪器仪表学报,2017,38(1):245-251.(MA Y P, LI Q W, HE F J, et al. Adaptive segmentation algorithm for metal surface defects[J]. Chinese Journal of Scientific Instrument, 2017,38(1):245-251.)
[9] 郭皓然,邵伟,周阿维,等.全局阈值自适应的高亮金属表面缺陷识别新方法[J].仪器仪表学报,2017,38(11):2797-2804.(GUO H R, SHAO W, ZHOU A W, et al. Novel defect recognition method based on adaptive global threshold for highlight metal surface[J]. Chinese Journal of Scientific Instrument, 2017,38(11):2797-2804.)
[10] JOHNSON J, ALAHI A, LI F F. Perceptual losses for real-time style transfer and super-resolution[C]//Proceedings of the 2016 European Conference on Computer Vision. Berlin:Springer, 2016:694-711.
[11] RUMELHART D E, HINTON G E, WILLIAMS R J. Learning representations by back-propagating errors[J]. Nature, 1986, 323(6088):533-536.
[12] HE K, ZHANG X, REN S, et al. Deep residual learning for image recognition[C]//Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition. Washington, DC:IEEE Computer Society, 2016:770-778.
[13] BOTTOU, CURTIS F E, NOCEDA J, et al. Optimization methods for large-scale machine learning[J]. SIAM Review, 2016, 60(2):223-311.
[14] RADFORD A, METZ L, CHINTALA S. Unsupervised representation learning with deep convolutional generative adversarial networks[J]. ArXiv Preprint, 2016, 2016:1511.06434.
[15] LIM B, LEE K M. Deep recurrent ResNet for video super-resolution[C]//Proceedings of the 2018 IEEE Conference on Asia-pacific Signal and Information Processing Association Summit. Washington, DC:IEEE Conputer Society, 2018:643-648.
[16] IOFFE S, SZEGEDY C. Batch normalization:accelerating deep network training by reducing internal covariate shift[C]//Proceedings of the 2015 IEEE Conference on Computer Vision and Pattern Recognition. Washington, DC:IEEE Computer Society, 2015:448-456.
[17] NAIR V, HINTON G E. Rectified linear units improve restricted boltzmann machines[C]//Proceedings of the 2010 International Conference on Machine Learning. New York:ACM, 2010:807-814.
[18] SIMONVAN K, ZISSERMAN A. Very deep convolutional networks for large-scale image recognition[C]//Proceedings of the 2015 International Conference on Learning. Washington, DC:IEEE Computer Society, 2015:687-699.
[19] YU F, KOLTUN V. Multi-scale context aggregation by dilated convolutions[C]//Proceedings of the 2016 International Conference on Learning. Washington, DC:IEEE Computer Society, 2016:511-524.
[20] KINGMA D, BA J. Adam:a method for stochastic optimization[C]//Proceedings of the 2014 International Conference on Learning. Washington, DC:IEEE Computer Society, 2014:248-263.
[21] HOWARD A G, ZHU M, CHEN B, et al. MobileNets:efficient convolutional neural networks for mobile vision applications[C]//Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition. Washington, DC:IEEE Computer Society, 2017:1056-1065.
[22] ZHANG X, ZHOU X, LIN M, et al. ShuffleNet:an extremely efficient convolutional neural network for mobile devices[C]//Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition. Washington, DC:IEEE Computer Society, 2017:563-572. |