[1] 陈志,李天瑞,李明,等.基于计算统一设备架构的高铁故障诊断方法[J].计算机应用,2015,35(10):2819-2823.(CHEN Z, LI T R, LI M, et al. Fault diagnosis method of high-speed rail based on compute unified device architecture[J]. Journal of Computer Applications, 2015, 35(10):2819-2823.)
[2] 李佳睿,岳建海.基于HHT及共振解调方法的动车组走行部轴箱轴承故障诊断算法[J].北京交通大学学报,2017,41(4):85-90.(LI J R, YUE J H. Fault diagnosis algorithm for the axle box bearing of walking unit in EMU based on HHT and resonance demodulation method[J]. Journal of Beijing Jiaotong University, 2017, 41(4):85-90.)
[3] LEI Y, HE Z, ZI Y. EEMD method and WNN for fault diagnosis of locomotive roller bearings[J]. Expert Systems with Applications, 2011, 38(6):7334-7341.
[4] SHAO H D, JIANG H K, HUI F W, et al. An enhancement deep feature fusion method for rotating machinery fault diagnosis[J]. Knowledge-Based Systems, 2017, 119:200-220.
[5] JURGEN S. Deep learning in neural networks:an overview[J]. Neural Networks, 2015, 61(1):85-117.
[6] 郭超,杨燕,金炜东.基于EDBN-SVM的高速列车故障分析[J].计算机科学,2016,43(12):281-286.(GUO C, YANG Y, JIN W D. Fault analysis of high speed train based on EDBN-SVM[J]. Computer Science, 2016, 43(12):281-286.)
[7] 庞荣,余志斌,熊维毅,等.基于深度学习的高速列车转向架故障识别[J].铁道科学与工程学报, 2015,12(6):1283-1288. (PANG R, YU Z B, XIONG W Y, et al. Faults recognition of high-speed train bogie based on deep learning[J]. Journal of Railway Science and Engineering, 2015, 12(6):1283-1288.)
[8] SHAO H D, JIANG H K, ZHAO K. A novel tracking deep wavelet auto-encoder method for intelligent fault diagnosis of electric locomotive bearings[J]. Mechanical Systems and Signal Processing, 2018, 110:193-209.
[9] DONOHO D. Compressed sensing[J]. IEEE Transactions on Information Theory, 2006, 52(4):1289-1306.
[10] 王雅思,姚鸿勋,孙晓帅,等.深度学习中的自编码器的表达能力研究[J].计算机科学,2015,42(9):56-60.(WANG Y S, YAO H X, SUN X S, et al. Representation ability research of auto-encoders in deep learning[J]. Computer Science, 2015,42(9):56-60.)
[11] SHAO H D, JIANG H K, ZHAO H, et al. A novel deep autoencoder feature learning method for rotating machinery fault diagnosis[J]. Mechanical Systems and Signal Processing, 2017, 95(10):187-204.
[12] 韩霜,吴奇,孙礼兵,等.基于深度收缩自编码网络的飞行员疲劳状态识别[J].生物医学工程学杂志,2018,35(3):443-451.(HAN S, WU Q, SUN L B. Recognition of fatigue status of pilots based on deep contractive auto-encoding network[J]. Journal of Biomedical Engineering, 2018,35(3):443-451.)
[13] 姜红茹.基于深度SVM和深度小波神经网络的极化SAR影像地物分类[D].西安:西安电子科技大学,2014:15-29.(JIANG H R. Terrain classfication of PolSAR image with deep SVM and deep wavelet networks[D]. Xi'an:Xidian University, 2014:15-29.)
[14] 薛参观,燕雪峰.基于改进深度森林算法的软件缺陷预测[J].计算机科学,2018,45(8):160-165.(XUE C G, YAN X F. Software defect prediction based on improved deep forest algorithm[J]. Computer Science, 2018,45(8):160-165.)
[15] QU J X, ZHANG Z S, GONG T. A novel intelligent method for mechanical fault diagnosis based on dual-tree complex wavelet packet transform and multiple classifier fusion[J]. Neurocomputing, 2016, 171(1):837-853.
[16] MINOWA Y. Verification for generalizability and accuracy of a thinning-trees selection model with the ensemble learning algorithm and the cross-validation method[J]. Journal of Forest Research, 2008,13(5):275-285. |