[1] HINTON G, OSINDERO S, TEH Y. A fast learning algorithm for deep belief nets[J]. Neural Computation, 2006, 18(7):1527-1554.
[2] ZHOU S, CHEN Q, WANG X, et al. Hybrid deep belief networks for semi-supervised sentiment classification[C]//Proceeding of the 201425th International Conference on Computational Linguistic. Stroudsburg, PA:Association for Computational Linguistics, 2014:1341-1349.
[3] ZHOU S, CHEN Q, WANG X. Active deep networks for semisupervised sentiment classification.[C]//Proceedings of the 201023rd International Conference on Computational Linguistics. Stroudsburg, PA:Association for Computational Linguistics, 2010:1515-1523.
[4] SOCHER R, PERELYGIN A, WU J J. et al. Recursive deep models for semantic compositionality over a sentiment treebank[C]//Proceedings of the 2013 International Conference on Empirical Methods in Natural Language Processing. Stroudsburg, PA:Association for Computational Linguistics, 2013:1631-1642.
[5] DASGUPTA, S, NG V. Mine the easy, classify the hard:a semisupervised approach to automatic sentiment classification[C]//Proceedings of the 200947th International Conference on Annual Meeting of the Association for Computational Linguistics and Proceedings of the 2009/4th International Joint Conference on Natural Language of the Asian Federation of Natural Language Processing. Stroudsburg, PA:Association for Computational Linguistics, 2009:701-709.
[6] PANG B, LEE L, VAITHYANATHAN S. Thumbs up?:sentiment classification using machine learning techniques[C]//Proceedings of the 2002 International Conference on Association for Computational Linguistics on Empirical Methods in Natural Language Processing. Stroudsburg, PA:Association for Computational Linguistics, 2002:79-86.
[7] FORMAN G. An extensive empirical study of feature selection metrics for text classification[J]. The Journal of Machine Learning Research, 2003:1289-1305.
[8] YANG Y, PEDERSEN J O. A comparative study on feature selection in text categorization[C]//Proceedings of the 199714th International Conference on Machine Learning. San Francisco, CA:Morgan Kaufmann, 1997:412-420.
[9] 周茜,赵明生,扈旻.中文文本分类中的特征选择研究[J].中文信息学报,2004,18(3):17-23.(ZHOU Q, ZHAO M S, HU M. Research on feature selection in Chinese text classification[J]. Journal of Chinese Information Processing, 2004, 18(3):17-23.)
[10] 吴金源,冀俊忠,赵学武,等.基于特征选择技术的情感词权重计算[J].北京工业大学学报,2016,42(1):142-151.(WU J Y, JI J Z, ZHAO X W, et al. Weight calculation of affective words based on feature selection technique[J]. Journal of Beijing University of Technology, 2016, 42(1):142-151.)
[11] 周爱武,马那那,刘慧婷.基于卡方统计的情感文本分类[J].微电子学与计算机,2017,34(8):57-61.(ZHOU A W, MA N N, LIU H T. Emotional text classification based on chi-square statistics[J]. Microelectronics and Computer, 2017, 34(8):57-61.)
[12] 裴英博,刘晓霞.文本分类中改进型CHI特征选择方法的研究[J].计算机工程与应用,2011,47(4):128-130.(PEI Y B, LIU X X. Research on improved CHI feature selection method in text classification[J]. Computer Engineering and Application, 2011, 47(4):128-130.)
[13] BAGHERI A, SARAEE M, de JONG F. Sentiment classification in Persian:introducing a mutual information-based method for feature selection[C]//Proceedings of the 201321th International Conference on Electrical Engineering. Piscataway, NJ:IEEE, 2013:1-6.
[14] BLIZER J, DREDZE M, PEREIRA F. Biographies, bollywood, boomboxes and blenders:domain adaptation for sentiment classification[C]//Proceedings of the 2007 International Conference on Association for Computational Linguistic. Stroudsburg, PA:Association for Computational Linguistics, 2007:440-447.
[15] LOPES N, RIBEIRO B, GONÇALVES J. Restricted Boltzmann machines and deep belief networks on multi-core processors[C]//Proceedings of the 2012 International Joint Conference on Neural Networks Piscataway, NJ:IEEE, 2012:1-7.
[16] 张庆庆,刘西林.基于深度信念网络的文本情感分类研究[J].西北工业大学学报(社会科学版),2016,36(1):62-66.(ZHANG Q Q, LIU X L. Research on text emotion classification based on deep belief network[J]. Journal of Northwest Polytechnic University (Social Science Edition), 2016, 36(1):62-66.)
[17] 伊尔夏提·吐尔贡,吾守尔·斯拉木,热西旦木·吐尔洪太,等.维吾尔文情感语料库的构建与分析[J].计算机与现代化,2017(4):67-72.(TUERGONG Y, SILAMU W, TUSERHONGTAI R, et al. Construction and analysis of Uighur affective corpus[J]. Computer and Modernization, 2017(4):67-72.)
[18] KAMVAR S D, DAN K, MANNING C D. Spectral learning[C]//Proceedings of the 2003 International Joint Conference on Artificial Intelligence. San Francisco, CA:Morgan Kaufmann, 2003:561-566.
[19] COLLOBERT R, SINZ F, WESTON J, et al. Large scale transductive SVMs[J]. The Journal of Machine Learning Research, 2006, 7:1687-1712.
[20] LI S, HUANG C R, ZHOU G, et al. Employing personal/impersonal views in supervised and semi-supervised sentiment classification[C]//Proceedings of the 201048th International Joint Conference on Annual Meeting of the Association for Computational Linguistics. Stroudsburg, PA:Association for Computational Linguistics, 2010:414-423.
[21] RUANGKANOKMAS P, ACHALAKUL T, AKKARAJITSAKUL K. Deep belief networks with feature selection for sentiment classification[C]//Proceedings of the 201748th International Conference on Intelligent Systems, Modelling and Simulation. Piscataway, NJ:IEEE, 2017:9-14. |