[1] FENG S L, MANMATHA R, LAVRENKO V. Multiple Bernoulli relevance models for image and video annotation[C]//Proceedings of the 2004 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Washington, DC:IEEE Computer Society, 2004:1002-1009.
[2] JEON J, LAVRENKO V, MANMATHA R. Automatic image annotation and retrieval using cross-media relevance models[C]//Proceedings of the 26th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval. New York:ACM, 2003:119-126.
[3] MORAN S, LAVRENKO V. A sparse kernel relevance model for automatic image annotation[J]. Journal of Multimedia Information Retrieval, 2014, 3(4):209-229.
[4] MAKADIA A, PAVLOVIC V, KUMAR S. Baselines for image annotation[J]. International Journal of Computer Vision, 2010, 90(1):88-105.
[5] VERMA Y, JAWAHAR C V. Image annotation using metric learning in semantic neighborhoods[C]//Proceedings of the 12th European Conference on Computer Vision. Berlin:Springer, 2012:836-849.
[6] GUILLAUMIN M, MENSINK T, VERBEEK J, et al. TagProp:discriminative metric learning in nearest neighbor models for image auto-annotation[C]//Proceedings of the 12th IEEE International Conference on Computer Vision. Piscataway, NJ:IEEE, 2009:309-316.
[7] CHANG E, GOH K, SYCHAY G, et al. CBSA:content-based soft annotation for multimodal image retrieval using Bayes point machines[J]. IEEE Transactions on Circuits and Systems for Video Technology, 2003, 13(1):26-38.
[8] GRANGIER D, BENGIO S. A discriminative kernel-based approach to rank images from text queries[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2008, 30(8):1371-1384.
[9] YANG C, DONG M, HUA J. Region-based image annotation using asymmetrical support vector machine-based multiple-instance learning[C]//Proceedings of the 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Washington, DC:IEEE Computer Society, 2006:2057-2063.
[10] 黎健成,袁春,宋友.基于卷积神经网络的多标签图像自动标注[J].计算机科学,2016,43(7):41-45.(LI J C, YUAN C, SONG Y. Multi-label image annotation based on convolutional neural network[J]. Computer Science, 2016, 43(7):41-45.)
[11] 高耀东,侯凌燕,杨大利.基于多标签学习的卷积神经网络的图像标注方法[J].计算机应用,2017,37(1):228-232.(GAO Y D, HOU L Y, YANG D L. Automatic image annotation method using multi-label learning convolutional neural network[J]. Journal of Computer Applications, 2017, 37(1):228-232.)
[12] 汪鹏,张奥帆,王利琴,等.基于迁移学习与多标签平滑策略的图像自动标注[J].计算机应用,2018,38(11):3199-3203.(WANG P, ZHANG A F, WANG L Q, et al. Image automatic annotation based on transfer learning and multi-label smoothing strategy[J]. Journal of Computer Applications, 2018, 38(11):3199-3203.)
[13] 李志欣,郑永哲,张灿龙,等.结合深度特征与多标记分类的图像语义标注[J].计算机辅助设计与图形学学报,2018,30(2):318-326.(LI Z X, ZHENG Y Z, ZHANG C L, et al. Combining deep feature and multi-label classification for semantic image annotation[J]. Journal of Computer-Aided Design and Computer Graphics, 2018, 30(2):318-326.)
[14] GOODFELLOW I, POUGET-ABADIE J, MIRZA M, et al. Generative adversarial nets[C]//Proceedings of the 2014 Conference on Advances in Neural Information Processing Systems 27. Montreal:Curran Associates, 2014:2672-2680.
[15] 王坤峰,苟超,段艳杰,等.生成式对抗网络GAN的研究进展与展望[J].自动化学报,2017,43(3):321-332.(WANG K F, GOU C, DUAN Y J, et al. Generative adversarial networks:the state of the art and beyond[J]. Acta Automatica Sinica, 2017, 43(3):321-332.)
[16] MIRZA M, OSINDERO S. Conditional generative adversarial nets[J]. ArXiv Preprint, 2014, 2014:1411.1784.
[17] ARJOVSKY M, CHINTALA S, BOTTOU L. Wasserstein GAN[J]. ArXiv Preprint, 2017, 2017:1701.07875.
[18] GULRAJANI I, AHMED F, ARJOVSKY M, et al. Improved training of Wasserstein GANs[C]//Proceedings of the 30th Advances in Neural Information Processing Systems. Long Beach, CA:NIPS, 2017:5769-5779.
[19] SZEGEDY C, IOFFE S, VANHOUCKE V, et al. Inception-v4, inception-ResNet and the impact of residual connections on learning[C]//Proceedings of the Thirty-First AAAI Conference on Artificial Intelligence. Menlo Park, CA:AAAI Press, 2017:4278-4284.
[20] FU H, ZHANG Q, QIU G. Random forest for image annotation[C]//Proceedings of the 12th European Conference on Computer Vision. Berlin:Springer, 2012:86-99.
[21] VERMA Y, JAWAHAR C. Exploring SVM for image annotation in presence of confusing labels[C]//Proceedings of the 24th British Machine Vision Conference. Durham:BMVA Press, 2013:1-11.
[22] KASHANI M M, AMIRI S H. Leveraging deep learning representation for search-based image annotation[C]//Proceedings of 2017 Artificial Intelligence and Signal Processing Conference. Piscataway, NJ:IEEE, 2017:156-161.
[23] MURTHY V N, MAJI S, MANMATHA R. Automatic image annotation using deep learning representations[C]//Proceedings of the 5th ACM on International Conference on Multimedia Retrieval. New York:ACM, 2015:603-606.
[24] 周铭柯,柯逍,杜明智.基于数据均衡的增进式深度自动图像标注[J].软件学报,2017,28(7):1862-1880.(ZHOU M K, KE X, DU M Z. Enhanced deep automatic image annotation based on data equalization[J]. Journal of Software, 2017, 28(7):1862-1880.)
[25] 柯逍,周铭柯,牛玉贞.融合深度特征和语义邻域的自动图像标注[J].模式识别与人工智能,2017,30(3):193-203.(KE X, ZHOU M K, NIU Y Z. Automatic image annotation combining semantic neighbors and deep features[J]. Pattern Recognition and Artificial Intelligence, 2017, 30(3):193-203.) |