[1] LEIKE J, HEIZMANN M. Geometric nontermination arguments[C]//TACAS 2018:Proceedings of the 2018 International Conference on Tools and Algorithms for the Construction and Analysis of Systems. Berlin:Springer, 2018:172-186.
[2] FEDYUKOVICH G, ZHANG Y L, GUPTA A. Syntax-guided termination analysis[C]//CAV 2018:Proceedings of the 2018 International Conference on Computer Aided Verification. Berlin:Springer, 2018:124-143.
[3] CHEN Y F, HEIZMANN M, LENGAL O, et al. Advanced automata-based algorithms for program termination checking[C]//PLDI 2018:Proceedings of the 2018 ACM SIGPLAN Conference on Programming Language Design and Implementation. New York:ACM, 2018:135-150.
[4] LI Y. Witness to non-termination of linear programs[J]. Theoretical Computer Science, 2017, 681:75-100.
[5] CHEN Y H, XIA B C, YANG L, et al. Discovering non-linear ranking functions by solving semi-algebraic systems[C]//ICTAC 2007:Proceedings of the 2007 International Colloquium on Theoretical Aspects of Computing. Berlin:Springer, 2007:34-49.
[6] COLON M, SPIMA H. Synthesis of linear ranking functions[C]//TACAS 2001:Proceedings of the 2001 International Conference on Tools and Algorithms for the Construction and Analysis of Systems. Berlin:Springer, 2001:67-81.
[7] COLON M, SPIMA H. Practical methods for proving program termination[C]//CAV 2002:Proceedings of the 2002 International Conference on Computer Aided Verification. Berlin:Springer, 2002:442-454.
[8] PODELSKI A, RYBALCHENKO A. A complete method for the synthesis of linear ranking functions[C]//VMCAI 2004:Proceedings of the 2004 International Conference on Verification, Model Checking and Abstract Interpretation. Berlin:Springer, 2004:239-251.
[9] SCHRIJVER A. Theory of Linear and Integer Programming[M]. New York:John Wiley and Sons, Inc., 1986:87-90.
[10] BEN-AMRAM A M, GENAIM S. Ranking functions for linear-constraint loops[J]. Journal of the ACM, 2014, 61(4):Article No. 26.
[11] TURING A M. On computable numbers, with an application to the entscheidungs problem[J]. Proceedings of the London Mathematical Society, 1937, 42(2):230-265.
[12] BRAVEMAN M. Termination of integer linear programs[C]//CAV 2006:Proceedings of the 2006 International Conference on Computer Aided Verification. Berlin:Springer, 2006:372-385.
[13] TIWARI A. Termination of linear programs[C]//CAV 2004:Proceedings of the 2004 International Conference on Computer Aided Verification. Berlin:Springer, 2004:70-82.
[14] YANG L, ZHAN N J, XIA B C, et al. Program verification by using DISCOVERER[C]//VSTTE 2005:Proceedings of the 2005 Working Conference on Verified Software:Theories, Tools, and Experiments. Berlin:Springer, 2008:528-538.
[15] BAGNARA R, MESNARD F. Eventual linear ranking functions[C]//PPDP 2013:Proceedings of the 2013 International Symposium on Principles and Practice of Declarative Programming. New York:ACM, 2013:229-238.
[16] BEN-AMRAM A M, GENAIM S. On multiphase-linear ranking functions[C]//CAV 2017:Proceedings of the 2017 International Conference on Computer Aided Verification. Berlin:Springer, 2017:601-620.
[17] BRADLEY A R, MANNA Z, SIPMA H B. Linear ranking with reachability[C]//CAV 2005:Proceedings of the 2005 International Conference on Computer Aided Verification. Berlin:Springer, 2005:491-504.
[18] BRADLEY A R, MANNA Z, SIPMA H B. The polyranking principle[C]//ICALP 2005:Proceedings of the 2005 International Conference on Automata, Languages and Programming. Berlin:Springer, 2005:1349-1361.
[19] LEIKE J, HEIZMANN M. Ranking templates for linear loops[C]//TACAS 2014:Proceedings of the 2014 International Conference on Tools and Algorithms for the Construction and Analysis of Systems. Berlin:Springer, 2014:172-186.
[20] LI Y, ZHU G, FENG Y. The L-depth eventual linear ranking functions for single-path linear constraint loops[C]//TASE 2016:Proceedings of the 2016 International Symposium on Theoretical Aspects of Software Engineering. Piscataway, NJ:IEEE, 2016:30-37.
[21] COUSOT P. Proving program invariance and termination by parametric abstraction, Lagrangian relaxation and semidefinite programming[C]//VMCAI 2005:Proceedings of the 2005 International Conference on Verification, Model Checking and Abstract Interpretation. Berlin:Springer, 2005:1-24.
[22] SHEN L Y, WU M, YANG Z F, et al. Generating exact nonlinear ranking functions by symbolic-numeric hybrid method[J]. Journal of Systems Science and Complexity, 2013, 26(2):291-301.
[23] KAPUR D, SAXENA T, YANG L. Algebraic and geometric reasoning using Dixon resultants[C]//ISSAC 1994:Proceedings of the 1994 International Symposium on Symbolic and Algebraic Computation. New York:ACM, 1994:99-107.
[24] YANG L. Solving harder problems with lesser mathematics[C]//ATCM 2005:Proceedings of the 2005 Asian Technology Conference in Mathematics. Radford, VA:Mathematics and Technology, 2005:37-46.
[25] DIXON A L. The eliminant of three quantics in two independent variables[J]. Proceedings of the London Mathematical Society, 1909, s2-7(49):49-69.
[26] 杨路,姚勇.差分代换矩阵与多项式的非负性判定[J].系统科学与数学,2009,29(9):1169-1177.(YANG L, YAO Y. Difference substitution matrices and decision on nonnegativity of polynomials[J]. Journal of Systems Science and Mathematical Sciences, 2009, 29(9):1169-1177.)
[27] HOU X R, SHAO J W. Bounds on the number of steps of WDS required for checking the positivity of integral forms[J]. Applied Mathematics and Computation, 2011, 217(24):9978-9984.
[28] 韩京俊.基于差分代换的正半定型判定完备方法[J].北京大学学报(自然科学版),2013,49(4):545-551.(HAN J J. A complete method based on successive difference substitution method for deciding positive semi-definiteness of polynomials[J]. Acta Scientiarum Naturalium Universitatis Pekinensis, 2013, 49(4):545-551.)
[29] 杨路.差分代换与不等式机器证明[J].广州大学学报(自然科学版),2006,5(2):1-7.(YANG L. Difference substitution and automated inequality proving[J]. Journal of Guangzhou University (Natural Science edition), 2006, 5(2):1-7.)
[30] QIN X, WU D, TANG L, et al. Complexity of constructing Dixon resultant matrix[J]. International Journal of Computer Mathematics, 2016, 94(10):1-16.
[31] LI Y. An effective hybrid algorithm for computing symbolic determinants[J]. Applied Mathematics and Computation, 2009, 215(7):2495-2501.
[32] KALTOFEN E. On computing determinants of matrices without divisions[C]//ISSAC 1992:Proceedings of the 1992 International Symposium on Symbolic and Algebraic Computation. New York:ACM, 1992:342-349. |