Journal of Computer Applications

• Graphics and image processing • Previous Articles     Next Articles

MRI image denoising based on improved wavelet thresholding

<a href="http://www.joca.cn/EN/article/advancedSearchResult.do?searchSQL=((([Author]) AND 1[Journal]) AND year[Order])" target="_blank"></a> <a href="http://www.joca.cn/EN/article/advancedSearchResult.do?searchSQL=((([Author]) AND 1[Journal]) AND year[Order])" target="_blank"></a><a href="http://www.joca.cn/EN/article/advancedSearchResult.do?searchSQL=((([Author]) AND 1[Journal]) AND year[Order])" target="_blank"></a><a href="http://www.joca.cn/EN/article/advancedSearchResult.do?searchSQL=((([Author]) AND 1[Journal]) AND year[Order])" target="_blank"></a> <a href="http://www.joca.cn/EN/article/advancedSearchResult.do?searchSQL=((([Author]) AND 1[Journal]) AND year[Order])" target="_blank"></a>C<a href="http://www.joca.cn/EN/article/advancedSearchResult.do?searchSQL=((([Author]) AND 1[Journal]) AND year[Order])" target="_blank"></a>h<a href="http://www.joca.cn/EN/article/advancedSearchResult.do?searchSQL=((([Author]) AND 1[Journal]) AND year[Order])" target="_blank"></a>e<a href="http://www.joca.cn/EN/article/advancedSearchResult.do?searchSQL=((([Author]) AND 1[Journal]) AND year[Order])" target="_blank"></a>n<a href="http://www.joca.cn/EN/article/advancedSearchResult.do?searchSQL=((([Author]) AND 1[Journal]) AND year[Order])" target="_blank"></a> <a href="http://www.joca.cn/EN/article/advancedSearchResult.do?searchSQL=((([Author]) AND 1[Journal]) AND year[Order])" target="_blank"></a>h<a href="http://www.joca.cn/EN/article/advancedSearchResult.do?searchSQL=((([Author]) AND 1[Journal]) AND year[Order])" target="_blank"></a>a<a href="http://www.joca.cn/EN/article/advancedSearchResult.do?searchSQL=((([Author]) AND 1[Journal]) AND year[Order])" target="_blank"></a>o<a href="http://www.joca.cn/EN/article/advancedSearchResult.do?searchSQL=((([Author]) AND 1[Journal]) AND year[Order])" target="_blank"></a>y<a href="http://www.joca.cn/EN/article/advancedSearchResult.do?searchSQL=((([Author]) AND 1[Journal]) AND year[Order])" target="_blank"></a>a<a href="http://www.joca.cn/EN/article/advancedSearchResult.do?searchSQL=((([Author]) AND 1[Journal]) AND year[Order])" target="_blank"></a>n<a href="http://www.joca.cn/EN/article/advancedSearchResult.do?searchSQL=((([Author]) AND 1[Journal]) AND year[Order])" target="_blank"></a>g<a href="http://www.joca.cn/EN/article/advancedSearchResult.do?searchSQL=((([Author]) AND 1[Journal]) AND year[Order])" target="_blank"></a> <a href="http://www.joca.cn/EN/article/advancedSearchResult.do?searchSQL=((([Author]) AND 1[Journal]) AND year[Order])" target="_blank"></a>X<a href="http://www.joca.cn/EN/article/advancedSearchResult.do?searchSQL=((([Author]) AND 1[Journal]) AND year[Order])" target="_blank"></a>i<a href="http://www.joca.cn/EN/article/advancedSearchResult.do?searchSQL=((([Author]) AND 1[Journal]) AND year[Order])" target="_blank"></a>n<a href="http://www.joca.cn/EN/article/advancedSearchResult.do?searchSQL=((([Author]) AND 1[Journal]) AND year[Order])" target="_blank"></a>g<a href="http://www.joca.cn/EN/article/advancedSearchResult.do?searchSQL=((([Author]) AND 1[Journal]) AND year[Order])" target="_blank"></a>   

  • Received:2006-12-11 Revised:2007-01-27 Online:2007-06-01 Published:2007-06-01

基于改进的小波阈值技术MRI图像去噪

张海建 陈向东 幸浩洋   

  1. 西南交通大学 西南交通大学 四川大学华西医学中心
  • 通讯作者: 张海建

Abstract: A scheme based on the improved wavelet threshold for the noise removal in Magnetic Resonance Image (MRI) images was presented. In this paper, the wavelet threshold method was improved according to the characteristics of MRI images and according to neighboring threshold of wavelet coefficients, conquering the limitation of using traditional wavelet transform. The experimental result indicates that the algorithm can maintain the details of the MRI images while removing the noise, in favor of doctors’ diagnosis.

Key words: wavelet transform, wavelet coefficients, thresholding denoising

摘要: 提出了一种改进的小波阈值处理的核磁共振成像(MRI)医学图像的去噪方法。结合图像的特点并利用小波系数的区域相关性,对小波阈值处理方法进行了改进,根据信号和噪声系数的不同分别处理,克服了传统小波变换不足。结果表明该方法在有效去除噪声的同时,较好保留了MRI图像的细节,有利于医学的诊断。

关键词: 小波变换, 小波系数, 阈值去噪