Journal of Computer Applications ›› 2009, Vol. 29 ›› Issue (10): 2678-2680.

• Graphics and image processing • Previous Articles     Next Articles

Mean-Shift object tracking based on scale invariant feature transform

  

  • Received:2009-04-09 Revised:2009-05-30 Online:2009-10-28 Published:2009-10-01
  • Contact: YANG Xin-li

基于尺度不变特征变换的Mean-Shift目标跟踪

杨心力1,杨恢先2,曾金芳3,于洪3   

  1. 1. 湘潭大学 材料与光电物理学院
    2. 湖南湘潭大学材料与光电物理学院
    3.
  • 通讯作者: 杨心力
  • 基金资助:
    省部级基金

Abstract: Mean-Shift algorithm performs well in object tracking field because of its advantages of fast pattern matching and non-parametric estimation. However, this algorithm has its inherent deficiencies. In order to improve the robustness of Mean-Shift algorithm, the target was divided into a number of sub-regions in this paper, each sub-region individually used Mean-Shift tracking, and those whose iterations are more than eight times quit. And Scale Invariant Feature Transform (SIFT) was employed to exclude those sub-regions with smaller matching key points. Finally, the object location was obtained according to the sub-regions with more matching key points. Experiments show that the proposed method is of high robustness in situations of occlusion, scale change, rotation, scene change, etc.

Key words: target region division, Scale Invariant Feature Transform (SIFT), Mean-Shift, object tracking

摘要: 均值漂移(Mean-Shift)目标跟踪算法由于具有快速模板匹配和无参数密度估计等特点,但也存在其固有的缺陷。为了提高该算法的鲁棒性,把目标分成多个区域,对每个区域利用Mean-Shift进行跟踪,迭代次数大于8的放弃迭代。然后利用尺度不变特征变换(SIFT)剔除那些匹配的关键点数目少的子区域。最后,利用匹配关键点数目多的区域得到目标的位置。实验结果表明该方法在目标受遮挡、尺度变化、旋转、环境场景等变化等具有很强的鲁棒性。

关键词: 目标区域划分, 尺度不变特征变换, 均值漂移, 目标跟踪