Journal of Computer Applications
• Typical applications • Previous Articles Next Articles
<a href="http://www.joca.cn/EN/article/advancedSearchResult.do?searchSQL=(((Bei Hui[Author]) AND 1[Journal]) AND year[Order])" target="_blank">Bei Hui</a>
Received:
Revised:
Online:
Published:
Contact:
惠孛 吴跃
通讯作者:
Abstract: Because Naive Bayes (NB) classification model is simple and effective, good efficiency can be achieved in antispam applications. On the other hand, the assumption of its attribute independence makes it unable to express its semantic dependence. This paper proposed a new antispam classification model based on semi-NB classification model, averaged on N one-dependence classification model. It relaxed the assumption of condition independence of each attribute. It was assumed that all attributes were dependent on one attribute (1-dependence). The average on N 1-dependence was regarded as the probability of each class label. This method is simple and efficient and decreases the classification error ratio.
Key words: Bayesian classification, semi-Naive Bayes, spam
摘要: 由于朴素贝叶斯分类模型的简单高效,在垃圾邮件分类时可以达到较好的效果;但朴素贝叶斯的条件独立假设割裂了属性之间的关系,影响了分类的准确性。放松朴素贝叶斯分类模型关于属性之间条件独立假设,介绍一种新的基于不完全朴素贝叶斯分类模型的垃圾邮件分类模型,N平均1依赖邮件过滤模型。使用N个1依赖分类模型的平均概率作为分类的预测概率。实验证明,该模型在简单、高效的同时降低了对垃圾邮件分类的错误率。
关键词: 贝叶斯分类, 不完全朴素贝叶斯, 垃圾邮件
Bei Hui . Anti-spam model based on semi-Naive Bayesian classification model[J]. Journal of Computer Applications.
惠孛 吴跃. 基于不完全朴素贝叶斯分类模型的垃圾邮件分类模型[J]. 计算机应用.
0 / Recommend
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.joca.cn/EN/
http://www.joca.cn/EN/Y2009/V29/I3/903