[1] 龙亿.下肢外骨骼人体运动预测与人机协调控制技术研究[D].哈尔滨:哈尔滨工业大学,2017:1-2.(LONG Y. Human motion prediction and human-robot coordination control for lower extremity exoskeleton[D]. Harbin:Harbin Institute of Technology, 2017:1-2.)
[2] 欧阳小平,范伯骞,丁硕.助力型下肢外骨骼机器人现状及展望[J].科技导报,2015,33(23):92-99.(OUYANG X P, FAN B Q, DING S. Status and prospects of the lower extremity exoskeleton robots for human power augmentation[J]. Science and Technology Review, 2015, 33(23):92-99.)
[3] 宋遒志,王晓光,王鑫,等.多关节外骨骼助力机器人发展现状及关键技术分析[J].兵工学报,2016,37(1):172-185.(SONG Q Z, WANG X G, WANG X, et al. Development of multi-joint exoskeleton-assisted robot and its key technology analysis:an overview[J]. Acta Armamentarii, 2016, 37(1):172-185.)
[4] YANG C J, NIU B, CHEN Y. Adaptive neuro-fuzzy control based development of a wearable exoskeleton leg for human walking power augmentation[C]//Proceedings of the 2005 IEEE/ASME International Conference on Advanced Intelligent Mechatronics Monterey. Piscataway, NJ:IEEE, 2005:467-472.
[5] 陈春杰.基于柔性传动的助力全身外骨骼机器人系统研究[D].北京:中国科学院大学,2017:57-63.(CHEN C J. Research on power-assisted full-body exoskeleton robotic system based on flexible drive[D]. Beijing:University of Chinese Academy of Sciences, 2017:57-63.)
[6] 赵丽娜,刘作军,苟斌,等.基于隐马尔可夫模型的动力型下肢假肢步态预识别[J].机器人,2014,36(3):337-341.(ZHAO L N, LIU Z J, GOU B, et al. Gait pre-recognition of dynamic lower limb prosthesis based on hidden Markov model[J]. Robot, 2014, 36(3):337-341.)
[7] LIU X H, ZHOU Z H, MAI J G, et al. Multi-class SVM based real-time recognition of sit-to-stand and stand-to-sit transitions for a bionic knee exoskeleton in transparent model[C]//Proceedings of the 2017 International Conference on Intelligent Robotics and Applications. Berlin:Springer, 2017:262-272.
[8] GUO Q, JIANG D. Method for walking gait identification in a lower extremity exoskeleton based on C4.5 decision tree algorithm[J]. International Journal of Advance Robotic Systems, 2015, 12(4):1-11.
[9] WANG Y B, XIONG R, WANG J N, et al. Multi-class assembly parts recognition using composite feature and random forest for robot programming by demonstration[C]//Proceedings of the 2015 IEEE Conference on Robotics and Biomimetics. Piscataway, NJ:IEEE, 2015:698-703.
[10] BAGLEY J D. The behavior of adaptive systems which employ genetic and correlation algorithms[D]. Ann Arbor, MI:University of Michigan, 1967.
[11] 陈建华,奚如如,王兴松,等.外骨骼机器人的非结构地面行走步态分类算法[J].机器人,2017,39(4):505-513.(CHEN J H, XI R R, WANG X S, et al. Walking gait classification algorithm for exoskeleton robot on unstructured ground[J]. Robot, 2017, 39(4):505-513.)
[12] MIRJALILI S, LEWIS A. The whale optimization algorithm[J]. Advances in Engineering Software, 2016, 95:51-67.
[13] ZENG M R, XI L, XIAO A M. The free step length ant colony algorithm in mobile robot path planning[J]. Advanced Robotics, 2016, 30(23):1509-1514.
[14] MIRJALILI S, MIRJALILI S M, LEWIS A. Grey wolf optimizer[J]. Advances in Engineering Software, 2014, 69:46-61.
[15] 李航.统计学习方法[M].北京:清华大学出版社,2018:95-130.(LI H. Statistical Learning Method[M]. Beijing:Tsinghua University Press, 2018:95-130.)
[16] LONG Y, DU Z J, WANG W D, et al. PSO-SVM-based online locomotion mode identification for rehabilitation robotic exoskeletons[J]. Sensors, 2016, 16(9):1408.
[17] 周志华.机器学习[M].北京:清华大学出版社,2016:121-138.(ZHOU Z H. Machine Learning[M]. Beijing:Tsinghua University Press, 2016:121-138.)
[18] WU G Z, WANG C, WU X Y, et al. Gait phase prediction for lower limb exoskeleton robots[C]//Proceedings of the 2016 IEEE International Conference on Information and Automation. Piscataway, NJ:IEEE, 2016:19-24.
[19] 钟明辉,龙文.一种随机调整控制参数的鲸鱼优化算法[J].科学技术与工程,2017,17(12):68-73.(ZHONG M H, LONG W. Whale optimization algorithm based on stochastic adjustment control parameter[J]. Science Technology and Engineering, 2017, 17(12):68-73.)
[20] WATKINS W A, SCHEVILL W E. Aerial observation of feeding behavior in four baleen whales:Eubalaena glacialis, Balaenoptera borealis, Megaptera novaeangliae, and Balaenoptera physalus[J]. Journal of Mammalogy, 1979, 60(1):155-163.
[21] 潘勇,郭晓东.一种基于遗传算法改进的粒子群优化算法[J].计算机应用与软件,2011,28(9):222-224.(PAN Y, GUO X D. An improved particle swarm optimization algorithm based on genetic algorithm[J]. Computer Applications and Software, 2011, 28(9):222-224.) |