Journal of Computer Applications ›› 2012, Vol. 32 ›› Issue (10): 2927-2930.DOI: 10.3724/SP.J.1087.2012.02927

• Artificial intelligence • Previous Articles     Next Articles

Optimization algorithm of electronic system condition monitoring data

YANG Sen,MENG Chen,WANG Cheng   

  1. Department of Missile Engineering, Ordnance Engineering College, Shijiazhuang Hebei 050003, China
  • Received:2012-04-28 Revised:2012-06-02 Online:2012-10-23 Published:2012-10-01
  • Contact: YANG Sen

电子系统健康状态监测数据优化算法

杨森,孟晨,王成   

  1. 军械工程学院 导弹工程系,石家庄 050003
  • 通讯作者: 杨森
  • 作者简介:杨森(1984-),男,河北石家庄人,博士研究生,主要研究方向:复杂电子装备状态监测与自动测试;孟晨(1963-),男,河南郑州人,教授,博士生导师,主要研究方向:军械装备通用自动测试系统检测与诊断;王成(1980-),男,湖北人,讲师,博士,主要研究方向:自动测试系统。

Abstract: To solve the redundancy and high-dimensional problem of the electronic system condition monitoring data, a monitoring data optimization algorithm that combined the sample optimization and features optimization was put forward. Firstly, monitoring data samples were optimized by feature space sample selection algorithm, and the most representative samples were found; then monitoring data characteristics were optimized by KPCA-EDA algorithm after the sample optimization. More recognition information was retained on guarantee that the feature information was enough. Finally, a filter circuit was taken as an example to simulate, and the result shows that this method is effective.

Key words: electronic system, monitoring data optimization, feature space sample selection, Kernel Principal Component Analysis (KPCA), Estimation of Distribution Algorithms (EDA)

摘要: 为解决电子系统健康状态监测数据的冗余性和高维性问题,提出了一种将样本优化和特征优化相结合的监测数据优化算法。首先,采用特征空间样本选择算法对监测数据进行样本优化,找出最具代表性的样本;然后,采用核主成分分析—分布估计算法(KPCA-EDA)对样本优化后的监测数据进行特征优化,在保证特征信息充足的情况下,保留更多的识别信息;最后,以某滤波电路为例进行了验证,仿真结果表明,该算法同KPCA等优化算法相比,在训练时间和识别率上能达到更好的平衡。

关键词: 电子系统, 监测数据优化, 特征空间样本选择, 核主成分分析, 分布估计算法

CLC Number: