[1] ESFAHANIAN A H, HAKIMI S L. On computing a conditional edge-connectivity of a graph[J]. Information Processing Letters, 1988, 27(4):195-199. [2] WANG X, FAN J, ZHOU J, et al. The restricted h-connectivity of the data center network DCell[J]. Discrete Applied Mathematics, 2016,203:144-157. [3] HSIEH S Y, HUANG H W, LEE C W. {2,3}-restricted connectivity of locally twisted cubes[J]. Theoretical Computer Science, 2016,615:78-90. [4] LIN L, XU L, ZHOU S, et al. The extra, restricted connectivity and conditional diagnosability of split-star networks[J]. IEEE Transactions on Parallel and Disributed Systems, 2016,27(2):533-545. [5] LIN R, ZHANG H. The restricted edge-connectivity and restricted connectivity of augmented k-ary n-cubes[J]. International Journal of Computer Mathematics, 2016,93(8):1281-1298. [6] LI S, TU J, YU C. The generalized 3-connectivity of star graphs and bubble-sort graphs[J]. Applied Mathematics and Computation, 2016, 274(4):41-46. [7] XU X, XU M, JING J. Edge-fault-tolerant edge-bipancyclicity of bubble-sort graphs[J]. Acta Mathematica Sinica (English Series), 2012, 28(4):675-686. [8] WANG J, XU X, GAO L. Decycling bubble sort graphs[J]. Discrete Applied Mathematics, 2015, 194(C):178-182. [9] WANG S, YANG Y. Fault tolerance in bubble-sort graph networks[J]. Theoretical Computer Science, 2012, 421(3):62-69. [10] YANG Y, WANG S, LI J. Subnetwork preclusion for bubble-sort networks[J]. Information Processing Letters, 2015, 115(11):817-821. [11] CHENG E, LIPTÁK L, SHAWASH N, Orienting Cayley graphs generated by transposition trees[J]. Computers and Mathematics with Applications, 2008, 55(11):2662-2672. [12] BONDY J A, MURTY U S R. Graph Theory[M]. New York:Springer, 2008:623-628. |