[1] HAN D, LI P, AN S, et al. Multi-frequency weak signal detection based on wavelet transform and parameter compensation band-pass multi-stable stochastic resonance[J]. Mechanical Systems and Signal Processing, 2016, 70/71:995-1010. [2] 李宏坤,张学峰,徐福健,等.基于时频分析的欠定信号盲分离与微弱特征提取[J].机械工程学报,2014,50(18):14-22.(LI H K, ZHANG X F, XU F J, et al. Investigation on blind source separation for under-determined mixtures based on time-frequency analysis and weak feature extraction[J]. Journal of Mechanical Engineering, 2014, 50(18):14-22.) [3] 武哲,杨绍普,刘永强,等.基于多元经验模态分解的旋转机械早期故障诊断方法[J].仪器仪表学报,2016,37(2):241-248.(WU Z, YANG S P, LIU Y Q, et al. Rotating machinery early fault diagnosis method based on multivariate empirical mode decomposition[J]. Chinese Journal of Scientific Instrument, 2016, 37(2):241-248.) [4] 李红延,周云龙,田峰,等.一种新的小波自适应阈值函数振动信号去噪算法[J].仪器仪表学报,2015,36(10):2200-2206.(LI H Y, ZHOU Y L, TIAN F, et al. Wavelet-based vibration signal de-noising algorithm with a new adaptive threshold function[J]. Chinese Journal of Scientific Instrument, 2015, 36(10):2200-2206.) [5] BENZI R, SUTERA A, VULPIANI A. The mechanism of stochastic resonance[J]. Journal of Physics A:Mathematical and General, 1981, 14(11):L453-L457. [6] 范剑,赵文礼,张明路,等.随机共振动力学机理及其微弱信号检测方法的研究[J].物理学报,2014,63(11):110506-1-110506-11.(FAN J, ZHAO W L, ZHANG M L, et al. Nonlinear dynamics of stochastic resonance and its application in the method of weak signal detection[J]. Acta Physica Sinica, 2014, 63(11):110506-1-110506-11.) [7] GAMMAITONI L, HÄNGGI P, JUNG P, et al. Stochastic resonance[J]. Reviews of Modern Physics, 1988, 70(1):223-287. [8] 冷永刚,王太勇.二次采样用于随机共振从强噪声中提取弱信号的数值研究[J].物理学报,2003,52(10):2432-2437.(LENG Y G, WANG T Y. Numerical research of twice sampling stochastic resonance for the detection of a weak signal submerged in a heavy noise[J]. Acta Physica Sinica, 2003, 52(10):2432-2437.) [9] 谢有浩,刘晓乐,刘后广,等.基于改进移频变尺度随机共振的齿轮故障诊断[J].农业工程学报,2016,32(8):70-76.(XIE Y H, LIU X L, LIU H G, et al. Improved frequency-shifted and re-scaling stochastic resonance for gear fault diagnosis[J]. Transactions of the Chinese Society of Agricultural Engineering, 2016, 32(8):70-76.) [10] ZHANG X, HU N, CHENG Z, et al. Enhanced detection of rolling element bearing fault based on stochastic resonance[J]. Chinese Journal of Mechanical Engineering, 2012, 25(6):1287-1297. [11] 季袁冬,张路,罗懋康.幂函数型单势阱随机振动系统的广义随机共振[J].物理学报,2014,63(16):242-252.(JI Y D, ZHANG L, LUO M K. Generalized stochastic resonance of power function type single-well system[J]. Acta Physica Sinica, 2014, 63(16):242-253.) [12] 张刚,宋莹,张天骐,等.Levy噪声下一阶线性系统的弱信号复原分析[J].仪器仪表学报,2016,37(1):109-118.(ZHANG G, SONG Y, ZHANG T Q, et al. Weak signal recovery analysis in first-order linear system under Levy noise[J]. Chinese Journal of Scientific Instrument, 2016, 37(1):109-118.) [13] 张刚,胡韬,张天骐.Levy噪声激励下的幂函数型单稳随机共振特性分析[J].物理学报,2015,64(22):72-81.(ZHANG G, HU T, ZHANG T Q. Characteristic analysis of power function type monostable stochastic resonance with Levy noise[J]. Acta Physica Sinica, 2015, 64(22):72-81.) [14] 贺利芳,崔莹莹,张天骐,等.基于幂函数型双稳随机共振的故障信号检测方法[J].仪器仪表学报,2016,37(7):1457-1467.(HE L F, CUI Y Y, ZHANG T Q, et al. Fault signal detection method based on power function type bistable stochastic resonance[J]. Chinese Journal of Scientific Instrument, 2016, 37(7):1457-1467.) [15] 崔伟成,李伟,孟凡磊,等.基于果蝇优化算法的自适应随机共振轴承故障信号检测方法[J].振动与冲击,2016,35(10):96-100.(CUI W C, LI W, MENG F L, et al. Adaptive stochastic resonance method for bearing fault detection based on fruit fly optimization algorithm[J]. Journal of Vibration and Shock, 2016, 35(10):96-100.) [16] 朱维娜,林敏.基于人工鱼群算法的轴承故障随机共振自适应检测方法[J].振动与冲击,2014,33(6):143-147.(ZHU W N, LIN M. Method of adaptive stochastic resonance for bearing fault detection based on artificial fish swarm algorithm[J]. Journal of Vibration and Shock, 2014, 33(6):143-147.) [17] 王晶,张庆,梁霖,等.采用遗传算法的自适应随机共振系统弱信号检测方法研究[J].西安交通大学学报,2010,44(3):32-36.(WANG J, ZHANG Q, LIANG L, et al. Adaptive stochastic resonance based on genetic algorithm with applications in weak signal detection[J]. Journal of Xi'an Jiaotong University, 2010, 44(3):32-36.) [18] 焦尚彬,李鹏华,张青,等.采用知识的粒子群算法的多频微弱信号自适应随机共振检测方法[J].机械工程学报,2014,50(12):1-10.(JIAO S B, LI P H, ZHANG Q, et al. Multi-frequency weak signal detection method based on adaptive stochastic resonance with knowledge-based PSO[J]. Journal of Mechanical Engineering, 2014, 50(12):1-10.) [19] 赵艳菊,王太勇,冷永刚,等.级联双稳随机共振降噪下的经验模式分解[J].天津大学学报(自然科学与工程技术版),2009,42(2):123-128.(ZHAO Y J, WANG T Y, LENG Y G, et al. Empirical mode decomposition based on cascaded bistable stochastic resonance denoising[J]. Journal of Tianjin University, 2009, 42(2):123-128.) [20] LI J, CHEN X, HE Z. Multi-stable stochastic resonance and its application research on mechanical fault diagnosis[J]. Journal of Sound and Vibration, 2013, 332(22):5999-6015. [21] 李宏坤,张晓雯,贺长波,等.利用随机共振的叶片裂纹微弱信息增强方法[J].机械工程学报,2016,52(1):94-101.(LI H K, ZHANG X W, HE C B, et al. Weak fault enhancement method for blade crack by using stochastic resonance[J]. Journal of Mechanical Engineering, 2016, 52(1):94-101.) [22] WANG J, HE Q, KONG F. Adaptive multiscale noise tuning stochastic resonance for health diagnosis of rolling element bearings[J]. IEEE Transactions on Instrumentation and Measurement, 2015, 64(2):564-577. |