[1] CHUA L O. Memristor-the missing circuit element[J]. IEEE Transactions on Circuit Theory, 1971, 18(5):507-519. [2] STRUKOV D B, SNIDER G S, STEWART D R, et al. The missing memristor found[J]. Nature, 2008, 453(7191):80-83. [3] DU C, CAI F, ZIDAN M A, et al. Reservoir computing using dynamic memristors for temporal information processing[J]. Nature Communications, 2017, 8:Article No. 2204. [4] JO S H, CHANG T, EBONG I, et al. Nanoscale memristor device as synapse in neuromorphic systems[J]. Nano Letters, 2010, 10(4):1297-1301. [5] KVATINSKY S, FRIEDMAN E G, KOLODNY A, et al. TEAM:ThrEshold Adaptive Memristor model[J]. IEEE Transactions on Circuits and Systems I:Regular Papers, 2013, 60(1):211-221. [6] 江之源.基于阈值自适应忆阻模型的分析及应用研究[D].重庆:西南大学,2016:11-12.(JIANG Z Y. Analysis and application research based on threshold adaptive memristor model[D].Chongqing:Southwestern University, 2016:11-12.) [7] 代祥光.忆阻神经网络的应用[D].重庆:重庆大学,2012:1-3.(DAI X G. Application of memristive neural network[D]. Chongqing:Chongqing University, 2012:1-3.) [8] ALIBART F, ZAMANIDOOST E, STRUKOV D B. Pattern classification by memristive crossbar circuits using ex situ and in situ training[J]. Nature Communications, 2013, 4(3):131-140. [9] PARK S, SHERI A, KIM J, et al. Neuromorphic speech systems using advanced ReRAM-based synapse[C]//Proceedings of 2013 IEEE International Electron Devices Meeting. Piscataway, NJ:IEEE, 2013:25.6.1-25.6.4. [10] ZIEGLER M, SONI R, PATELCZYK T, et al. An electronic version of Pavlov's dog[J]. Advanced Functional Materials, 2012, 22(13):2744-2749. [11] HU S G, LIU Y, LIU Z, et al. Associative memory realized by a reconfigurable memristive Hopfield neural network[J]. Nature Communications, 2015, 6:Article number 7522. [12] HOPFIELD J J. Neural networks and physical systems with emergent collective computational abilities[J]. Proceedings of the National Academy of Sciences of the United States of America, 1982, 79(8):2554-2558. [13] HOPFIELD J J, TANK D W. "Neural" computation of decisions in optimization problems[J]. Biological Cybernetics, 1985, 52(3):141-145. [14] AGRAWAL R, IMIELINSKI T, SWAMI A N. Mining association rules between sets of items in large databases[C]//Proceedings of the 1993 ACM SIGMOD International Conference on Management of Data. New York:ACM, 1993:207-216. [15] AGRAWAL R, SRIKANT R. Fast algorithms for mining association rules in large databases[C]//VLDB'94:Proceedings of the 20th International Conference on Very Large Data Bases. San Francisco, CA:Morgan Kaufmann, 1994:487-499. [16] 王爱平,王占凤,陶嗣干,等.数据挖掘中常用关联规则挖掘算法[J].计算机技术与发展,2010,20(4):105-108.(WANG A P, WANG Z F, TAO S G, et al. Common algorithms of association rules mining in data mining[J]. Computer Technology and Development, 2010,20(4):105-108.) [17] PARK J S, CHEN M S, YU P S. An effective hash-based algorithm for mining association rules[J]. ACM SIGMOD Record, 1995, 24(2):175-186. [18] JI C R, DENG Z H. Mining frequent ordered patterns without candidate generation[C]//Proceedings of the 4th IEEE International Conference on Fuzzy Systems and Knowledge Discovery. Piscataway, NJ:IEEE, 2007,1:402-406. [19] SAVASERE A, OMIECINSKI E, NAVATHE S B, et al. An efficient algorithm for mining association rules in large databases[C]//VLDB'95:Proceedings of the 21st International Conference on Very Large Data Bases. San Francisco, CA:Morgan Kaufmann, 1995:432-444. [20] TOIVONEN H. Sampling large databases for association rules[C]//VLDB'96:Proceedings of the 22th International Conference on Very Large Data Bases. San Francisco, CA:Morgan Kaufmann, 1996:134-145. [21] AGRAWAL R, SHAFER J C. Parallel mining of association rules[J]. IEEE Transactions on Knowledge and Data Engineering, 2007, 8(6):962-969. [22] GABER K, BAHI J M, EL-GHAZAWI T A. Parallel mining of association rules with a Hopfield type neural network[C]//ICTAI'00:Proceedings of the 12th IEEE International Conference on Tools with Artificial Intelligence. Washington, DC:IEEE Computer Society, 2000:90-93. [23] ABDALLA H, PICKETT M D. SPICE modeling of memristors[C]//Proceedings of the 2011 IEEE International Symposium on Circuits and Systems. Piscataway, NJ:IEEE, 2011:1832-1835. [24] 徐开勇,龚雪容,成茂才.基于改进Apriori算法的审计日志关联规则挖掘[J].计算机应用,2016,36(7):1847-1851.(XU K Y, GONG X R, CHENG M C. Audit log association rule mining based on improved apriori algorithm[J]. Journal of Computer Applications, 2016, 36(7):1847-1851.) |