[1] WU W. Research of automatic test case generation algorithm based on improved particle swarm optimization[C]//ICMMCT 2016:Proceedings of the 4th International Conference on Machinery, Materials and Computing Technology. Paris:Atlantis Press, 2016:1558-1562. [2] SHARMA C, SABHARWAL S, SIBAL R. A survey on software testing techniques using genetic algorithm[J]. International Journal of Computer Science Issues, 2013, 10(1):381-393. [3] DENARO G, PEZZE M, VIVANTI M. Quantifying the complexity of dataflow testing[C]//Proceedings of the 8th International Workshop on Automation of Software Test. Piscataway, NJ:IEEE, 2013:132-138. [4] ELGHONDAKLY R, MOUSSA S, BADR N. Waterfall and agile requirements-based model for automated test cases generation[C]//Proceedings of the 2015 IEEE 7th International Conference on Intelligent Computing and Information Systems. Piscataway, NJ:IEEE, 2016:607-612. [5] KHAN R, AMJAD M. Automatic test case generation for unit software testing using genetic algorithm and mutation analysis[C]//Proceedings of the 2015 IEEE UP Section Conference on Electrical Computer and Electronics. Piscataway, NJ:IEEE, 2015:1-5. [6] ANDALIB A, BABAMIR S M. A new approach for test case generation by discrete particle swarm optimization algorithm[C]//Proceedings of the 201422nd Iranian Conference on Electrical Engineering. Piscataway, NJ:IEEE, 2015:1180-1185. [7] 郭后钱,王微微,尚颖,等.基于动态集合进化算法的弱变异测试用例集生成[J].计算机应用,2017,37(9):2659-2664.(GUO H Q, WANG W W, SHANG Y, et al. Weak mutation test case set generation based on dynamic set evolutionary algorithm[J]. Journal of Computer Applications, 2017, 37(9):2659-2664.) [8] 戚荣志,王志坚,黄宜华,等.基于Spark的并行化组合测试用例集生成方法[J].计算机学报,2018,41(6):1064-1079.(QI R Z, WANG Z J, HUANG Y H, et al. Generating combinatorial test suite with spark based parallel approach[J]. Chinese Journal of Computers, 2018, 41(6):1064-1079.) [9] 刘渊,杨永辉,张春瑞,等.一种基于遗传算法的Fuzzing测试用例生成新方法[J].电子学报,2017,45(3):552-556.(LIU Y, YANG Y H, ZHANG C R, et al. A novel method for fuzzing test cases generating based on genetic algorithm[J]. Acta Electronica Sinica, 2017, 45(3):552-556.) [10] 夏春艳,张岩,宋丽.基于节点概率的路径覆盖测试数据进化生成[J].软件学报,2016,27(4):802-813.(XIA C Y, ZHANG Y, SONG L. Evolutionary generation of test data for paths coverage based on node probability[J]. Journal of Software, 2016, 27(4):802-813.) [11] 李龙澍,郭紫梦.应用混沌果蝇算法的路径覆盖测试用例优化技术研究[J].小型微型计算机系统,2018,39(2):362-366.(LI L S, GUO Z M. Optimization techniques research on testing data through path coverage with chaotic fruit fly algorithm[J]. Journal of Chinese Computer Systems, 2018, 39(2):362-366.) [12] PASSINO K M. Biomimicry of bacterial foraging for distributed optimization and control[J]. IEEE Control Systems, 2002, 22(3):52-67. [13] 周雅兰.细菌觅食优化算法的研究与应用[J].计算机工程与应用,2010,46(20):16-21.(ZHOU Y L. Research and application on bacteria foraging optimization algorithm[J]. Computer Engineering and Applications, 2010, 46(20):16-21.) [14] SADEGHIRAM S. Bacterial foraging optimisation algorithm, particle swarm optimisation and genetic algorithm:a comparative study[J]. International Journal of Bio-Inspired Computation, 2017, 10(4):275-282. [15] CHEN Z, ZHOU Q. Kent chaos mapping application in the digital fountain codes[C]//Proceedings of the 30th Chinese Control Conference. Piscataway, NJ:IEEE, 2011:4371-4376. [16] 王令赛,姜淑娟,张艳梅,等.基于正交搜索的粒子群优化测试用例生成方法[J].电子学报, 2014, 42(12):2345-2351.(WANG L S, JIANG S J, ZHANG Y M, et al. Test case generation based on orthogonal exploration and particle swarm optimization[J]. Acta Electronica Sinica, 2014, 42(12):2345-2351.) [17] 刘建军,石定元,武国宁.基于Kent映射的混合混沌优化算法[J]. 计算机工程与设计,2015, 36(6):1498-1503.(LIU J J, SHI D Y, WU G N. Hybrid chaotic optimization algorithm based on Kent map[J]. Computer Engineering and Design, 2015, 36(6):1498-1503.) [18] 姜淑娟,王令赛,薛猛,等.基于模式组合的粒子群优化测试用例生成方法[J].软件学报,2016,27(4):785-801.(JIANG S J, WANG L S, XUE M, et al. Test case generation based on combination of schema using particle swarm optimization[J]. Journal of Software, 2016, 27(4):785-801.) [19] 高雪笛,周丽娟,张树东,等.基于改进遗传算法的测试数据自动生成的研究[J].计算机科学,2017, 44(3):209-214.(GAO X D, ZHOU L J, ZHANG S D, et al. Research on test data automatic generation based on improved genetic algorithm[J]. Compter Science, 2017, 44(3):209-214.) [20] 张翼鹏,葛丽娜,王红,等.基于改进细菌觅食算法的舆情热点话题发现[J].计算机工程与设计, 2017, 38(10):2832-2837.(ZHANG Y P, GE L N, WANG H, et al. Cluster of people opinion analysis based on improved bacterial foraging optimization[J]. Computer Engineering and Design, 2017, 38(10):2832-2837.) |