Journal of Computer Applications ›› 2019, Vol. 39 ›› Issue (7): 2008-2013.DOI: 10.11772/j.issn.1001-9081.2018122549

• Advanced computing • Previous Articles     Next Articles

GPU-based morphological reconstruction system

HE Xi<sup>1,2</sup>, WU Yantao<sup>1</sup>, DI Zhenwei<sup>1</sup>, CHEN Jia<sup>1</sup>   

  1. 1. College of Data Science and Software Engineering, Wuzhou University, Wuzhou Guangxi 543002, China;
    2. Guangxi Colleges and Universities Key Laboratory of Professional Software Technology(Wuzhou University), Wuzhou Guangxi 543002, China
  • Received:2018-12-26 Revised:2019-03-06 Online:2019-03-29 Published:2019-07-10
  • Supported by:

    This work is partially supported by the National Natural Science Foundation of China (61562074).

基于图形处理器的形态学重建系统

何希1,2, 吴炎桃1, 邸臻炜1, 陈佳1   

  1. 1. 梧州学院 大数据与软件工程学院, 广西 梧州 543002;
    2. 广西高校行业软件技术重点实验室(梧州学院), 广西 梧州 543002
  • 通讯作者: 陈佳
  • 作者简介:何希(1978-),男,广西梧州人,讲师,博士,主要研究方向:并行计算、分布式计算、数据可视化;吴炎桃(1978-),女,广西苍梧人,讲师,主要研究方向:软件工程;邸臻炜(1980-),女,广西梧州人,讲师,硕士,主要研究方向:数据可视化、虚拟现实;陈佳(1982-),女,重庆人,副教授,主要研究方向:图像处理、机器学习。
  • 基金资助:

    国家自然科学基金资助项目(61562074)。

Abstract:

Morphological reconstruction is a fundamental and critical operation in medical image processing, in which dilation operations are repeatedly carried out on the marker image based on the characteristics of mask image, until no change occurs on the pixels of the marker image. Concerning the problem that traditional CPU-based morphological reconstruction system has low computational efficiency, using Graphics Processing Unit (GPU) to quicken the morphological reconstruction was proposed. Firstly, a GPU-friendly data structure:parallel heap cluster was proposed. Then, based on the parallel heap cluster, a GPU-based morphological reconstruction system was designed and implemented. The experimental results show that compared with traditional CPU-based morphological reconstruction system, the proposed GPU-based morphological reconstruction system can achieve speedup ratio over 20 times. The proposed system demonstrates how to efficiently port complex data structure-based software system onto GPU.

Key words: Graphics Processing Unit (GPU), morphological reconstruction, parallel computing, parallel heap, parallel data structure

摘要:

形态学重建是医学图像处理中非常基础和重要的操作。它根据掩膜图像的特征对标记图像反复进行膨胀操作,直到标记图像中的像素值不再变化为止。对于传统基于中央处理器(CPU)的形态学重建系统计算效率不高的问题,提出了使用图形处理器(GPU)来加速形态学重建。首先,设计了适合GPU处理的数据结构:并行堆集群;然后,基于并行堆集群,设计和实现了一套基于GPU的形态学重建系统。实验结果表明,相比传统基于CPU的形态学重建系统,基于GPU的形态学重建系统可以获取超过20倍的加速比。基于GPU的形态学重建系统展示了如何把基于复杂数据结构的软件系统高效地移植到GPU上。

关键词: 图形处理器, 形态学重建, 并行计算, 并行堆, 并行数据结构

CLC Number: