[1] SOLEYMANI M, CHANEL G, KIERKELS J J, et al. Affective ranking of movie scenes using physiological signals and content analysis[C]//Proceedings of the 2nd ACM Workshop on Multimedia Semantics. New York:ACM, 2008:32-39.
[2] TELPAZ A, WEBB R, LEVY D J. Using EEG to predict consumers' future choices[J]. Journal of Marketing Research, 2015, 52(4):511-529.
[3] AMBLER T, BRAEUTIGAM S, STINS J, et al. Salience and choice:neural correlates of shopping decisions[J]. Psychology and Marketing, 2004, 21(4):247-261.
[4] BALDO D, PARIKH H, PIU Y, et al. Brain waves predict success of new fashion products:a practical application for the footwear retailing industry[J]. Journal of Creating Value, 2015, 1(1):61-71.
[5] KHUSHABA R N, GREENACRE L, KODAGODA S, et al. Choice modeling and the brain:a study on the electroencephalogram (EEG) of preferences[J]. Expert Systems with Applications, 2012, 39(16):12378-12388.
[6] MURUGAPPAN M. Wireless EEG signals based neuromarketing system using fast Fourier transform (FFT)[C]//CSPA 2014:Proceedings of the 10th International Colloquium on Signal Processing and Its Applications. Piscataway, NJ:IEEE, 2014:25-30.
[7] BOKSEM M A, SMIDTS A. Brain responses to movie trailers predict individual preferences for movies and their population-wide commercial success[J]. Journal of Marketing Research, 2015, 52(4):482-492.
[8] KAWASAKI M, YAMAGUCHI Y. Effects of subjective preference of colors on attention-related occipital theta oscillations[J]. Neuroimage, 2012, 59(1):808-814.
[9] FAUST O, HAGIWARA Y, HONG T J, et al. Deep learning for healthcare applications based on physiological signals:A review[J]. Computer Methods and Programs in Biomedicine, 2018, 161:1-13.
[10] SHU L, XIE J Y, YANG M Y, et al. A review of emotion recognition using physiological signals[J]. Sensors, 2018, 18(7):2074.
[11] LIANG J W, CHAUDHURI S R, SHINOZUKA M. Simulation of nonstationary stochastic processes by spectral representation[J]. Journal of Engineering Mechanics, 2007, 133(6):616-627.
[12] HUANG G Q, SU Y W, KAREEM A, et al. Time-frequency analysis of nonstationary process based on multivariate empirical mode decomposition[J]. Journal of Engineering Mechanics, 2016, 142(1):04015065.
[13] Mathworks Inc. Griddata function description[EB/OL].[2018-11-20]. https://ww2.mathworks.cn/help/matlab/ref/griddata.html.
[14] TRAN D, BOURDEV L, FERGUS R, et al. Learning spatiotemporal features with 3D convolutional networks[C]//ICCV 2015:Proceedings of the 2015 IEEE International Conference on Computer Vision. Piscataway, NJ:IEEE, 2015:4489-4497.
[15] 孔祥浩,马琳,李海峰,等.CNN与CSP相结合的脑电特征提取与识别方法研究[J].信号处理,2018,34(2):164-173.(KONG X H, MA L, LI H F, et al. Research on EEG feature extraction and recognition method based on CNN and CSP[J]. Journal of Signal Processing, 2018, 34(2):164-173.)
[16] 谢逸,饶文碧,段鹏飞,等.基于CNN和LSTM混合模型的中文词性标注[J].武汉大学学报(理学版),2017,63(3):246-250.(XIE Y, RAO W B, DUAN P F, et al. A Chinese POS tagging approach using CNN and LSTM-based hybrid model[J]. Wuhan University Journal of Natural Sciences, 2017, 63(3):246-250.)
[17] GREFF K, SRIVASTAVA R K, KOUTNíK J, et al. LSTM:a search space odyssey[J]. IEEE Transactions on Neural Networks and Learning Systems, 2015, 28(10):2222-2232.
[18] GERS F A, ECK D, SCHMIDHUBER J. Applying LSTM to time series predictable through time-window approaches[C]//ICANN 2001:Proceedings of the 10th International Conference on Artificial Neural Networks. Berlin:Springer, 2001:21-25. |