[1] SACCHET M D, PRASAD G, FOLANDROSSL C, et al. Elucidating brain connectivity networks in major depressive disorder using classification-based scoring[C]//Proceedings of the 2014 IEEE International Symposium on Biomedical Imaging. Piscataway, NJ:IEEE, 2014:246-249.
[2] NIXON N L, LIDDLE P F, NIXON E, et al. Biological vulnerability to depression:linked structural and functional brain network findings[J]. British Journal of Psychiatry, 2014, 204(4):283-289.
[3] PEREIRA F, MITCHELL T, BOTVINICK M. Machine learning classifiers and fMRI:a tutorial overview[J]. Neuroimage, 2009, 45(1):S199-S209.
[4] HAHN T, MARQUAND A F, EHLIS A C, et al. Integrating neurobiological markers of depression[J]. Archives of General Psychiatry, 2011, 68(4):361-368.
[5] MULDERS P C, van EIJNDHOVEN P F, SCHENE A H, et al. Resting-state functional connectivity in major depressive disorder:A review[J]. Neuroscience and Biobehavioral Reviews, 2015, 56:330-344.
[6] ANAND A, LI Y, WANG Y, et al. Activity and connectivity of brain mood regulating circuit in depression:a functional magnetic resonance study[J]. Biological Psychiatry, 2005, 57(10):1079-1088.
[7] CRADDOCK R C, HOLTZHEIMER R P, HU X P, et al. Disease state prediction from resting state functional connectivity[J]. Magnetic Resonance in Medicine, 2010, 62(6):1619-1628.
[8] GREICIUS M D, FLORES B H, MENON V, et al. Resting-state functional connectivity in major depression:abnormally increased contributions from subgenual cingulate cortex and thalamus[J]. Biological Psychiatry, 2007, 62(5):429-437.
[9] 温洪,郭浩,李越,等.重度抑郁症患者脑功能网络的分类研究[J].计算机应用研究,2013,30(8):2304-2307.(WEN H, GUO H, LI Y, et al. Classification of brain function networks in patients with major depression[J]. Application Research of Computers, 2013, 30(8):2304-2307.)
[10] FORNITO A, ZALESKY A, BULLMORE E T. Network scaling effects in graph analytic studies of human resting-state fMRI data[J]. Frontiers in Systems Neuroscience, 2010, 4:22-25.
[11] MIN R, WU G, CHENG J, et al. Multi-atlas based representations for Alzheimer's disease diagnosis[J]. Human Brain Mapping, 2015, 35(10):5052-5070.
[12] OTA K, OISHI N, ITO K, et al. A comparison of three brain atlases for MCI prediction[J]. Journal of Neuroscience Methods, 2014, 221:139-150.
[13] JING B, LONG Z, LIU H, et al. Identifying current and remitted major depressive disorder with the Hurst exponent:a comparative study on two automated anatomical labeling atlases[J]. Oncotarget, 2017, 8(52):90452-90464.
[14] LIU M, ZHANG D, SHEN D. Relationship induced multi-tem-plate learning for diagnosis of Alzheimer's disease and mild cognitive impairment[J]. IEEE Transactions on Medical Imaging, 2016, 35(6):1463-1474.
[15] TZOURIOMAZOYER N, LANDEAU B, PAPATHANASSIOU D, et al. Automated anatomical labeling of activations in SPM using a macroscopic anatomical parcellation of the MNI MRI single-subject brain[J]. Neuroimage, 2002, 15(1):273-289.
[16] 牛会兰.局部信息方法在功能脑网络建模中的应用研究[D].太原:太原理工大学,2016:10-13.(NIU H L. Application research of local information method in functional brain network modeling[D]. Taiyuan:Taiyuan University of Technology, 2016:10-13.)
[17] KHAZAEE A, EBRAHIMZADEH A, BABAJANI-FEREMI A. Identifying patients with Alzheimer's disease using resting-state fMRI and graph theory[J]. Clinical Neurophysiology, 2015, 126(11):2132-2141.
[18] LANGER N, PEDRONI A, JÄNCKE L. The problem of thresholding in small-world network analysis[J]. PLoS One, 2013, 8:e53199.
[19] KHAZAEE A, EBRAHIMZADEH A, BABAJANI-FEREMI A. Application of advanced machine learning methods on resting-state fMRI network for identification of mild cognitive impairment and Alzheimer's disease[J]. Brain Imaging and Behavior, 2016, 10(3):799-817.
[20] 郭浩.抑郁症静息态功能脑网络异常拓扑属性分析及分类研究[D].太原:太原理工大学,2013:5-10.(GUO H. Analysis and classification of abnormal topological attributes of resting brain function in depression[D]. Taiyuan:Taiyuan University of Technology, 2013:5-10.)
[21] ZHANG J, WANG J, WU Q, et al. Disrupted brain connectivity networks in drug-naive, first-episode major depressive disorder[J]. Biological Psychiatry, 2011, 70(4):334-342.
[22] GUO H, LIU L, CHEN J, et al. Alzheimer classification using a minimum spanning tree of high-order functional network on fMRI dataset[J]. Frontiers in Neuroscience, 2017, 11:639.
[23] GUO H, ZHANG F, CHEN J, et al. Machine learning classification combining multiple features of a hyper-network of fMRI data in Alzheimer's disease[J]. Frontiers in Neuroscience, 2017, 11:615.
[24] CAO L, GUO S, XUE Z, et al. Aberrant functional connectivity for diagnosis of major depressive disorder:a discriminant analysis[J]. Psychiatry and Clinical Neurosciences, 2014, 68(2):110-119.
[25] MEIER T B, DESPHANDE A S, VERGUN S, et al. Support vector machine classification and characterization of age-related reorganization of functional brain networks[J]. Neuroimage, 2012, 60(1):601-613.
[26] HESTERMAN J Y, CAUCCI L, KUPINSKI M A, et al. Maximum-likelihood estimation with a contracting-grid search algorithm[J]. IEEE Transactions on Nuclear Science, 2010, 57(3):1077-1084.
[27] BERGSTRA J, BENGIO Y. Random search for hyper-parameter optimization[J]. Journal of Machine Learning Research, 2012, 13(1):281-305.
[28] BECSEY J C, BERKE L, CALLAN J R. Nonlinear least squares methods:a direct grid search approach[J]. Journal of Chemical Education, 1968, 45(11):728.
[29] CHANG C C, LIN C J. LIBSVM:a library for support vector machines[J]. ACM Transactions on Intelligent Systems and Technology, 2011, 2:1-27.
[30] YE F, LOU X Y, SUN L F. An improved chaotic fruit fly optimization based on a mutation strategy for simultaneous feature selection and parameter optimization for SVM and its applications[J]. PLoS One, 2017, 12(4):e0173516. |