[1] 肖志涛,王雯,耿磊,等.基于背景估计和SVM分类器的眼底图像硬性渗出物检测方法[J].中国生物医学工程学报,2015,34(6):720-728.(XIAO Z T, WANG W, GENG L, et al. Hard exudates detection method based on background-estimation and SVM classifier[J]. Chinese Journal of Biomedical Engineering, 2015, 34(6):720-728.)
[2] WELFER D, SCHARCANSKI J, MARINHO D R. A coarse-to-fine strategy for automatically detecting exudates in color eye fundus images[J]. Computerized Medical Imaging Graphics, 2010, 34(3):228-235.
[3] WALTER T, KLEIN J C, MASSIN P, et al. A contribution of image processing to the diagnosis of diabetic retinopathy detection of exudates in color fundus images of the human retina[J]. IEEE Transactions on Medical Imaging, 2002, 21(10):1236-1243.
[4] QI F C, LI G, ZHENG S B. Automatic exudate detection in color fundus images[J]. Digital TV and Wireless Multimedia Communication, 2017, 685:155-165.
[5] SANTHI D, MANIMEGALAI D, PARVATHI S, et al. Segmentation and classification of bright lesions to diagnose diabetic retinopathy in retinal images[J]. Biomedizinische Technik (BIOMED TECH), 2016, 61(4):443-453.
[6] 曹新容,林嘉雯,薛岚燕,等.邻域约束模型的眼底图像硬性渗出聚类检测方法[J].计算机辅助设计与图形学学报,2018,30(11):2093-2100.(CAO X R, LIN J W, XUE L Y, et al. Clustering detection method of hard exudates in fundus image based on neighborhood constraint model[J]. Journal of Computer-Aided Design and Computer Graphics, 2018, 30(11):2093-2100.)
[7] SOPHARAK A, UYYANONVARA B, BARMAN S, et al. Comparative analysis of automatic exudate detection algorithms[C]//WCE 2010:Proceedings of the 2010 World Congress on Engineering. London:[s.n.], 2010:738-741.
[8] BIYANI R S, PATRE B M. A clustering approach for exudates detection in screening of diabetic retinopathy[C]//Proceedings of the 2016 International Conference on Signal and Information Processing. Washington, DC:IEEE Computer Society, 2016:1-5.
[9] ASHA P R, KARPAGAVALLI S. Diabetic retinal exudates detection using machine learning techniques[C]//Proceedings of the 2015 International Conference on Advanced Computing and Communication System. Piscataway, NJ:IEEE, 2015:1-5.
[10] ADEM K. Exudate detection for diabetic retinopathy with circular Hough transformation and convolutional neural networks[J]. Expert Systems with Applications, 2018, 11:289-295.
[11] PARHAM K, PASSOS J L A, TIAGO C, et al. Exudate detection in fundus images using deeply-learnable features[J]. Computers in Biology and Medicine, 2018, 104:62-69.
[12] AMIN J, SHARIF M, YASMIN M, et al. A method for the detection and classification of diabetic retinopathy using structural predictors of bright lesions[J]. Journal of Computational Science, 2017, 19:153-164.
[13] WRIGHT J, GANESH A, RAO S, et al. Robust principal component analysis:exact recovery of corrupted low-rank matrices via convex optimization[EB/OL].[2018-12-10]. https://arxiv.org/pdf/0905.0233v1.pdf.
[14] XIAO L, FANG B, LIU L H, et al. Extracting sparse error of robust PCA for face recognition in the presence of varying illumination and occlusion[J]. Pattern Recognition, 2014, 47(2):495-508.
[15] YAN J C, ZHU M Y, LIU H X, et al. Visual saliency detection via sparsity pursuit[J]. IEEE Signal Processing Letters, 2010, 17(8):739-742.
[16] 仓园园,孙玉宝,刘青山.基于分层鲁棒主成分分析的运动目标检测[J].计算机辅助设计与图形学学报,2014,23(4):537-544.(CANG Y Y, SUN Y B, LIU Q S. Moving object detection based on hierarchical robust principal component analysis[J]. Journal of Computer-Aided Design and Computer Graphics, 2014, 23(4):537-544.)
[17] CANDÉS E J, LI X, MA Y, et al. Robust principal component analysis?[J]. Journal of the ACM, 2011, 58(3):Article No. 11.
[18] AZIZI S, SAMAVI S, MOHREKESH M, et al. Cascaded transform space watermarking based on analysis of local entropy variation[C]//Proceedings of the 2013 International Conference on Multimedia and Expo Workshops. Piscataway, NJ:IEEE, 2013:1-6.
[19] 付晓薇,代芸,陈黎,等.基于局部熵的量子衍生医学超声图像去斑[J].电子与信息学报,2015,37(3):560-566.(FU X W, DAI Y, CHEN L, et al. Quantum-inspired despeckling of medical ultrasound images based on local entropy[J]. Journal of Electronics and Information Technology, 2015, 37(3):560-566.)
[20] MASSIN P, CHABOUIS A, ERGINAY A, et al. OPHDIAT©:A telemedical network screening system for diabetic retinopathy in the Île-de-France[J]. Diabetes and Metabolism, 2008, 34(3):227-234.
[21] DECENCIERE E, CAZUGUEL G, ZHANG X W, et al. TeleOphta:machine learning and image processing methods for teleophthalmology[J]. Innovation and Research in BioMedical Engineering, 2013, 34(2):196-203.
[22] ZHANG X W, THIBAULT G, DECENCIÈRE E, et al. Exudate detection in color retinal images for mass screening of diabetic retinopathy[J]. Medical Image Analysis, 2014, 18(7):1026-1043. |