[1] Amazon Web Services. AWS CloudHSM user guide[EB/OL].[2019-04-23]. https://docs.aws.amazon.com/cloudhsm/latest/userguide/cloudhsm-user-guide.pdf. [2] 齐可. 阿里云与江南天安强强联手国内首款云数据加密服务发布[J]. 信息安全与通信保密,2016(1):87-87. (QI K. The first cloud data encryption service released by Alibabaloud and JN TASS[J]. Information Security and Communications Privacy,2016(1):87-87.) [3] VIPIN K,FAHMY S A. FPGA dynamic and partial reconfiguration:a survey of architectures,methods,and applications[J]. ACM Computing Surveys,2018,51(4):No. 72. [4] XU Y,SUN L,GUO S,et al. Research and design of reconfigurable security resource pool framework[C]//Proceedings of the 2nd International Conference on Computer Science and Artificial Intelligence. New York:ACM,2018:620-626. [5] CALHEIROS R N, RANJAN R, BELOGLAZOV A, et al. CloudSim:a toolkit for modeling and simulation of cloud computing environments and evaluation of resource provisioning algorithms[J]. Software:Practice and Experience, 2011, 41(1):23-50. [6] SPEITKAMP B,BICHLER M. A mathematical programming approach for server consolidation problems in virtualized data centers[J]. IEEE Transactions on Services Computing,2010,3(4):266-278. [7] TEYEB H,BALMA A,HADJ-ALOUANE N B,et al. Optimal virtual machine placement in a multi-tenant cloud[C]//Proceedings of the 2014 Service-Oriented Computing Workshops,LNCS 8954. Cham:Springer,2015:308-319. [8] DAI X,WANG J M,BENSAOU B. Energy-efficient virtual machines scheduling in multi-tenant data centers[J]. IEEE Transactions on Cloud Computing,2016,4(2):210-221. [9] VEREDAS F J,CARMONA E J. FPGA placement improvement using a genetic algorithm and the routing algorithm as a cost function[C]//Proceedings of the 21st Euromicro Conference on Digital System Design. Piscataway:IEEE,2018:70-76. [10] RIAHI M,KRICHEN S. A multi-objective decision support framework for virtual machine placement in cloud data centers:a real case study[J]. The Journal of Supercomputing,2018,74(7):2984-3015. [11] HAGHIGHI M A,MAEEN M,HAGHPARAST M. An energy-efficient dynamic resource management approach based on clustering and meta-heuristic algorithms in cloud computing IaaS platforms[J]. Wireless Personal Communications,2019,104(4):1367- 1391. [12] 杨星, 马自堂, 孙磊. 云环境下基于改进蚁群算法的虚拟机批量部署研究[J]. 计算机科学,2012,39(9):33-37. (YANG X, MA Z T,SUN L. Research on extended ant colony optimization based virtual machine deployment in infrastructure clouds[J]. Computer Science,2012,39(9):33-37.) [13] LIU X,HAN Z,DENG J D,et al. An energy efficient ant colony system for virtual machine placement in cloud computing[J]. IEEE Transactions on Evolutionary Computation,2018,22(1):113-128. [14] JING C,ZHU Y,LI M. Energy-efficient scheduling on multi-FPGA reconfigurable systems[J]. Microprocessors and Microsystems, 2013,37(6/7):590-600. [15] JING C. Ant-colony optimization based algorithm for energy-efficient scheduling on dynamically reconfigurable systems[C]//Proceedings of the 9th International Conference on Frontier of Computer Science and Technology. Piscataway:IEEE,2015:127-134. [16] NGUYEN T H,FRANCESCO M D,YLAJAASKI A. Virtual machine consolidation with multiple usage prediction for energy-efficient cloud data centers[J/OL]. IEEE Transactions on Services Computing,[2019-06-05]. https://sci-hub.tw/10.1109/tsc.2017.2648791. [17] FAHMY S A,VIPIN K,SHREEJITH S. Virtualized FPGA accelerators for efficient cloud computing[C]//Proceedings of the IEEE 7th International Conference on Cloud Computing Technology and Science. Piscataway:IEEE,2015:430-435. |