[1] YAO A C. Protocols for secure computations[C]//Proceedings of the 23rd Annual Symposium on Foundations of Computer Science. Piscataway:IEEE,1982:160-164. [2] GOLDREICH O,MICALI S,WIGDERSON A. How to play any mental game-a completeness theorem for protocols with honest majority[C]//Proceedings of the 19th Annual ACM Symposium on Theory of Computing. New York:ACM,1987:218-229. [3] BEN-OR M,GOLDWASSER S,WIGDERSON A. Completeness theorems for non-cryptographic fault-tolerant distributed computation[C]//Proceedings of the 20th Annual ACM Symposium on Theory of Computing. New York:ACM,1988:1-10. [4] YAO A C C. How to generate and exchange secrets[C]//Proceedings of the 27th Annual Symposium on Foundations of Computer Science. Piscataway:IEEE,1986:162-167. [5] NISSIM K,WEINREB E. Communication efficient secure linear algebra[C]//Proceedings of the 3rd Theory of Cryptography Conference,LNCS 3876. Berlin:Springer,2006:522-541. [6] 马敏耀, 徐艺, 刘卓. 隐私保护DNA序列汉明距离计算问题[J]. 计算机应用,2019,39(9):2636-2640.(MA M Y,XU Y,LIU Z. Privacy preserving Hamming distance computing problem of DNA sequences[J]. Journal of Computer Applications,2019,39(9):2636-2640.) [7] LI S,WANG D,DAI Y. Symmetric cryptographic protocols for extended millionaires'problem[J]. Science in China Series F:Information Sciences,2009,52(6):974-982. [8] LIU W,WANG Y B,SUI A N,et al. Quantum protocol for millionaire problem[J]. International Journal of Theoretical Physics,2019,58(7):2106-2114. [9] JIA H,WEN Q,SONG T,et al. Quantum protocol for millionaire problem[J]. Optics Communications,2011,284(1):545-549. [10] SHI R,MU Y,ZHONG H,et al. An efficient quantum scheme for private set intersection[J]. Quantum Information Processing, 2016,15(1):363-371. [11] RINDAL P, ROSULEK M. Malicious-secure private set intersection via dual execution[C]//Proceedings of the 24th ACM Conference on Computer and Communications Security. New York:ACM,2017:1229-1242. [12] FREEDMAN M J,HAZAY C,NISSIM K,et al. Efficient setintersection with simulation-based security[J]. Journal of Cryptology,2016,29(1):115-155. [13] FREEDMAN M J, NISSIM K, PINKAS B. Efficient private matching and set intersection[C]//Proceedings of the 2004 International Conference on the Theory and Applications of Cryptographic Techniques,LNCS 3027. Berlin:Springer,2004:1-19. [14] HAZAY C,LINDELL Y. Efficient protocols for set intersection and pattern matching with security against malicious and covert adversaries[C]//Proceedings of the 5th Theory of Cryptography Conference,LNCS 4948. Berlin:Springer,2008:155-175. [15] 马敏耀, 陈松良, 左羽. 基于Goldwasser-Micali加密系统的隐私交集基数协议研究[J]. 计算机应用研究,2018,35(9):2748-2751.(MA M Y,CHEN S L,ZUO Y. Research on private set intersection cardinality protocol based on Goldwasser-Micali encryption system[J]. Application Research of Computers,2018, 35(9):2748-2751.) [16] MOHASSEL P,RINDAL P. ABY3:a mixed protocol framework for machine learning[C]//Proceedings of the 2018 ACM SIGSAC Conference on Computer and Communications Security. New York:ACM,2018:35-52. [17] 郭奕旻, 周素芳, 窦家维, 等. 高效的区间保密计算及应用[J]. 计算机学报,2017,40(7):1664-1679.(GUO Y M,ZHOU S F, DOU J W,et al. Efficient privacy-preserving interval computation and its applications[J]. Chinese Journal of Computers,2017,40(7):1664-1679.) [18] 窦家维, 王文丽, 李顺东. 区间位置关系的保密判定[J]. 计算机学报,2019,42(5):1031-1044.(DOU J W,WANG W L,LI S D. Privately determining interval location relation[J]. Chinese Journal of Computers,2019,42(5):1031-1044.) [19] 陈振华, 李顺东, 陈立朝, 等. 点和区间关系的全隐私保密判定[J]. 中国科学:信息科学,2018,48(2):187-204.(CHEN Z H, LI S D, CHEN L C, et al. Fully privacy-preserving determination of point-range relationship[J]. SCIENTIA SINICA Informationis,2018,48(2):187-204.) [20] 马敏耀, 吴恋, 刘卓, 等. 隐私保护整数点和区间关系判定问题[J]. 计算机应用,2020, 40(7):1983-1988.(MA M Y,WU L, LIU Z,et al. Privacy-preserving determination of integer pointinterval relationship[J]. Journal of Computer Applications,2020, 40(7):1983-1988.) [21] GOLDREICH O. Foundations of Cryptography:Basic Applications:Volume Ⅱ Basic Applications[M]. Cambridge:Cambridge University Press,2004:599-764. [22] GOLDWASSER S,MICALI S. Probabilistic encryption & how to play mental poker keeping secret all partial information[C]//Proceedings of the 14th Annual ACM Symposium on Theory of Computing. New York:ACM,1982:365-377. |