[1] 孙永全, 刘剑, 任和, 等. 基于累积磨损量分布的飞机刹车片可靠性分析[J]. 航空维修与工程,2015(1):85-88.(SUN Y Q, LIU J,REN H,et al. Reliability analysis of aircraft brake pads based on cumulative wear distribution[J]. Aviation Maintenance and Engineering,2015(1):85-88.) [2] 陶梅贞. 现代飞机结构综合设计[M]. 西安:西北工业大学出版社,2001:373-377.(TAO M Z. Comprehensive Design of Modern Aircraft Structure[M]. Xi' an:Northwestern Polytechnical University Press, 2001:373-377.) [3] 左洪福, 蔡景, 吴昊, 等. 航空维修工程学[M]. 北京:科学出版社,2011:268-271.(ZUO H F,CAI J,WU H,et al. Aviation Maintenance Engineering[M]. Beijing:Science Press, 2011:268-271.) [4] 任子强, 司小胜, 胡昌华, 等. 融合多传感器数据的发动机剩余寿命预测方法[J]. 航空学报,2019,40(12):No. 223312. (REN Z Q,SI X S,HU C H, et al. Remaining useful life prediction method for engine combining multi-sensors data[J]. Acta Aeronautica et Astronautica Sinica,2019,40(12):No. 223312.) [5] ZHAO Z,QUAN Q,CAI K. A profust reliability based approach to prognostics and health management[J]. IEEE Transactions on Reliability,2014,63(1):26-41. [6] ZIO E,DI MAIO F. A data-driven fuzzy approach for predicting the remaining useful life in dynamic failure scenarios of a nuclear system[J]. Reliability Engineering and System Safety,2010,95(1):49-57. [7] 赵广社, 吴思思, 荣海军. 多源统计数据驱动的航空发动机剩余寿命预测方法[J]. 西安交通大学学报,2017,51(11):150-155. (ZHAO G S,WU S S,RONG H J. A multi-source statistics datadriven method for remaining useful life prediction of aircraft engine[J]. Journal of Xi'an Jiaotong University, 2017, 51(11):150-155.) [8] 彭开香, 皮彦婷, 焦瑞华, 等. 航空发动机的健康指标构建与剩余寿命预测[J]. 控制理论与应用,2020,37(4):713-720. (PENG K X, PI Y T, JIAO R H, et al. Health indicator construction and remaining useful life prediction for aircraft engine[J]. Control Theory and Applications,2020,37(4):713-720.) [9] 李京峰, 陈云翔, 项华春, 等. 基于LSTM-DBN的航空发动机剩余寿命预测[J]. 系统工程与电子技术,2020,42(7):1637-1644.(LI J F,CHEN Y X,XIANG H C,et al. Remaining useful life prediction for aircraft engine based on LSTM-DBN[J]. Systems Engineering and Electronics,2020,42(7):1637-1644.) [10] 王素艳. 汽车制动摩擦片寿命预测及分析[J]. 汽车零部件, 2016(4):36-39. (WANG S Y. Automotive brake pad life prediction and analysis[J]. Automobile Parts,2016(4):36-39.) [11] 秦岭, 苏小平, 苏国营, 等. 汽车制动盘热-结构耦合仿真及寿命预测[J]. 机械设计与制造,2017(2):203-206.(QIN L,SU X P,SU G Y,et al. Thermal-structural coupling simulation and life prediction of disc brake[J]. Machinery Design and Manufacture, 2017(2):203-206.) [12] DE SÁ C R,SHEKAR A K,FERREIRA H,et al. Building robust prediction models for defective sensor data using artificial neural networks[C]//Proceedings of the 14th International Conference on Soft Computing Models in Industrial and Environmental Applications. Cham:Springer,2019:142-153. [13] LIU F,LIANG X,REN Q,et al. Life prediction of EMU brake pad based on optimized neural network and grey theory[J]. International Journal of Digital Content Technology and Its Applications,2013,7(10):118-128. [14] 崔建国, 李胜男, 于明月, 等. 基于组合预测模型的飞机刹车系统性能趋势预测分析[J]. 科学技术与工程,2018,18(31):179-183.(CUI J G,LI S N,YU M Y,et al. Analysis of aircraft braking system performance trend based on combined forecasting model[J]. Science Technology and Engineering,2018,18(31):179-183.) [15] KHAN S,YAIRI T. A review on the application of deep learning in system health management[J]. Mechanical Systems and Signal Processing,2018,107:241-265. [16] CHE C C,WANG H W,FU Q,et al. Combining multiple deep learning algorithms for prognostic and health management of aircraft[J]. Aerospace Science and Technology, 2019, 94:No. 105423. [17] ZHENG S,RISTOVSKI K,FARAHAT A,et al. Long short-term memory network for remaining useful life estimation[C]//Proceedings of the 2017 IEEE International Conference on Prognostics and Health Management. Piscataway:IEEE, 2017:88-95. [18] ZHANG J,WANG P,YAN R,et al. Long short-term memory for machine remaining life prediction[J]. Journal of Manufacturing Systems,2018,48(Pt C):78-86. [19] HOCHREITER S,SCHMIDHUBER J. Long short-term memory[J]. Neural Computation,1997,9(8):1735-1780. [20] 曾慧洁, 郭建胜. 双向LSTM神经网络的航空发动机故障预测[J]. 空军工程大学学报(自然科学版),2019, 20(4):26-32. (ZENG H J,GUO J S. Fault prognostic of aeroengine using bidirectional LSTM neural network[J]. Journal of Air Force Engineering University(Natural Science Edition),2019,20(4):26-32.) [21] DRAGOMIRETSKIY K, ZOSSO D. Variational mode decomposition[J]. IEEE Transactions on Signal Processing, 2014,62(3):531-544. [22] 贾亚飞, 朱永利, 王刘旺, 等. 基于VMD和多尺度熵的变压器内绝缘局部放电信号特征提取及分类[J]. 电工技术学报,2016, 31(19):208-217.(JIA Y F,ZHU Y L,WANG L W,et al. Feature extraction and classification on partial discharge signals of power transformers based on VMD and multiscale entropy[J]. Transactions of China Electrotechnical Society,2016,31(19):208-217.) [23] 张宁, 朱永利, 高艳丰, 等. 基于变分模态分解和概率密度估计的变压器绕组变形在线检测方法[J]. 电网技术,2016,40(1):297-302.(ZHANG N,ZHU Y L,GAO Y F,et al. An on-line detection method of transformer winding deformation based on variational mode decomposition and probability density estimation[J]. Power System Technology,2016,40(1):297-302.) [24] SUN G,CHEN T,WEI Z,et al. A carbon price forecasting model based on variational mode decomposition and spiking neural networks[J]. Energies,2016,9(1):No. 54. [25] 陈陈, 李晓明, 杨玲君, 等. 变分模态分解在电力系统谐波检测中的应用[J]. 电力系统保护与控制,2018,46(14):63-70. (CHEN C,LI X M,YANG L J,et al. Application of variational mode decomposition in power system harmonic detection[J]. Power System Protection and Control,2018,46(14):63-70.) [26] 刘建昌, 权贺, 于霞, 等. 基于参数优化VMD和样本熵的滚动轴承故障诊断[J/OL]. 自动化学报.[2020-07-27]. https://doi.org/10.16383/j.aas.190345. (LIU J C, QUAN H,YU X,et al. Rolling bearing fault diagnosis based on parameter optimization VMD and sample entropy[J/OL]. Acta Automatica Sinica.[2020-07-27]. https://doi.org/10.16383/j.aas.190345.) [27] 胡爱军, 白泽瑞, 赵军. 参数优化VMD结合1.5维谱的滚动轴承复合故障特征分离方法[J]. 振动与冲击,2020,39(11):45-52,62.(HU A J,BAI Z R,ZHAO J. Compound fault features separation method of rolling bearing based on parameter optimization VMD and 1.5 dimension spectrum[J]. Journal of Vibration and Shock,2020,39(11):45-52,62.) [28] DAI G,MA C,XU X. Short-term traffic flow prediction method for urban road sections based on space-time analysis and GRU[J]. IEEE Access,2019,7:143025-143035. |