Journal of Computer Applications ›› 2021, Vol. 41 ›› Issue (3): 763-767.DOI: 10.11772/j.issn.1001-9081.2020060839

Special Issue: 网络空间安全

• Cyber security • Previous Articles     Next Articles

Sunflower based construction of locally repairable codes

ZHANG Mao, LI Ruihu, ZHENG Youliang, FU Qiang   

  1. Department of Basic Sciences, Air Force Engineering University, Xi'an Shaanxi 710051, China
  • Received:2020-06-17 Revised:2020-10-16 Online:2021-03-10 Published:2021-01-15
  • Supported by:
    This work is partially supported by the National Natural Science Foundation of China (11901579,11801564), the Graduate Scientific Research Foundation of Department of Basic Sciences of Air Force Engineering University.

基于sunflower的局部修复码构造

张茂, 李瑞虎, 郑尤良, 付强   

  1. 空军工程大学 基础部, 西安 710051
  • 通讯作者: 李瑞虎
  • 作者简介:张茂(1996-),男,陕西西安人,硕士研究生,主要研究方向:大数据存储编码;李瑞虎(1966-),男,安徽阜阳人,教授,博士,主要研究方向:图论、群论、编码理论;郑尤良(1996-),男,陕西西安人,硕士研究生,主要研究方向:编码信息处理;付强(1989-),男,陕西西安人,讲师,博士,主要研究方向:量子纠错码、射影几何。
  • 基金资助:
    国家自然科学基金资助项目(11901579,11801564);空军工程大学基础部研究生创新基金资助项目。

Abstract: The construction of binary Locally Repairable Code (LRC) achieving C-M (Cadambe-Mazumdar) bound has been fully studied while there are few researches on general fields. In order to solve the problem, the construction of LRC on general fields was studied. Firstly, a method for determining the number of elements in sunflower was proposed by projective geometry theory. Then, the parameters such as code length, dimension and locality of LRC were clearly described by depicting LRC through the disjoint repair group. Finally, based on the parity-check matrix with disjoint local repair group, two families of LRC on general fields with the minimum distance of 6 were constructed by sunflower, many of which were optimal or almost optimal. Compared with the existing LRC constructed by methods such as subfield subcode, generalized concatenated code and algebraic curve, the constructed two families of codes improve the information rate under the same code minimum distance and locality. These results can be applied to the construction of other LRC on general fields.

Key words: Locally Repairable Code (LRC), general field, parity-check matrix, C-M (Cadambe-Mazumdar) bound, sunflower, disjoint local repair group

摘要: 针对目前构造达到C-M界的二元局部修复码(LRC)的相关研究已经较为充分,但在一般域上还相对较少的问题,研究了一般域上LRC的构造。首先,提出了通过射影几何理论确定sunflower中元素个数的方法。其次,通过不相交局部修复组刻画LRC,从而清楚地描述LRC的码长、维数和局部度等参数。最后,在具有不相交局部修复组的校验矩阵的基础上,利用sunflower构造了两类一般域上最小距离为6的LRC,其中很多LRC是最优或拟最优的。相较于现有利用子域子码、广义级联码和代数曲线等方法构造的LRC,所构造得到的两类码在相同的码的最小距离和局部度下提升了信息率。这些结果说明所提方法可应用于一般域上其他LRC的构造。

关键词: 局部修复码, 一般域, 校验矩阵, C-M界, sunflower, 不相交局部修复组

CLC Number: