[1] WEATHERSPOON H,KUBIATOWICZ J D. Erasure coding vs. replication:a quantitative comparison[C]//Proceedings of the 2002 International Workshop on Peer-to-Peer Systems, LNCS 2429. Berlin:Springer,2002:328-337. [2] HUANG C,SIMITCI H,XU Y,et al. Erasure coding in windows azure storage[C]//Proceedings of the 2012 USENIX Annual Technical Conference. Berkeley:USENIX Association, 2012:15-26. [3] KOPPARTY S,SARAF S,YEKHANIN S. High-rate codes with sublinear-time decoding[C]//Proceedings of 43rd ACM Symposium on Theory of Computing. New York:ACM,2011:167-176. [4] GOPALAN P,HUANG C,SIMITCI H,et al. On the locality of codeword symbols[J]. IEEE Transactions on Information Theory, 2012,58(11):6925-6934. [5] CADAMBE V R,MAZUMDAR A. An upper bound on the size of locally recoverable codes[C]//Proceedings of 2013 International Symposium on Network Coding. Piscataway:IEEE,2013:1-5. [6] CADAMBE V R,MAZUMDAR A. Bounds on the size of locally recoverable codes[J]. IEEE Transactions on Information Theory, 2015,61(11):5787-5794. [7] NAM M Y,SONG H Y. Binary locally repairable codes with minimum distance at least six based on partial t-spreads[J]. IEEE Communications Letters,2017,21(8):1683-1686. [8] SILBERSTEIN N,ZEH A. Optimal binary locally repairable codes via anticodes[C]//Proceedings of 2015 IEEE International Symposium on Information Theory. Piscataway:IEEE, 2015:1247-1251. [9] MA J,GE G. Optimal binary linear locally repairable codes with disjoint repair groups[J]. SIAM Journal on Discrete Mathematics, 2019,33(4):2509-2529. [10] FU Q,LI R,GUO L,et al. Locality of optimal binary codes[J]. Finite Fields and Their Applications,2017,48:371-394. [11] 杨森, 李瑞虎, 付强, 等. 二元局部修复码的新构造[J]. 空军工程大学学报(自然科学版),2019,20(6):104-108.(YANG S, LI R H,FU Q,et al. The new constructions of binary locally repairable codes[J]. Journal of Air Force Engineering University (Natural Science Edition),2019,20(6):104-108.) [12] BLAUM M. On Locally Repairable Codes (LRC)[EB/OL].[2020-03-26]. https://arxiv.org/pdf/1512.06161.pdf. [13] SENGER C,SHIVAKUMAR H K. Subfield subcodes of TamoBarg locally recoverable codes[C]//Proceedings of 29th Biennial Symposium on Communications. Piscataway:IEEE,2018:1-5. [14] BARG A, HAYMAKER K, HOWE E W, et al. Locally recoverable codes from algebraic curves and surfaces[M]//HOWE E W,LAUTER K E,WALKER J L,ed. Algebraic Geometry for Coding Theory and Cryptography,AWMS 9. Cham:Springer, 2017:95-127. [15] CHEN H,WENG J,LUO W. Long optimal or small-defect LRC codes with unbounded minimum distance[EB/OL].[2020-03-26]. https://arxiv.org/pdf/1910.07627.pdf. [16] CHEN B, XIA S, HAO J. Improved bounds and optimal constructions of locally repairable codes with distance 5 and 6[C]//Proceedings of the 2019 International Symposium on Information Theory. Piscataway:IEEE,2019:2823-2827. [17] PAPAILIOPOULOS D,DIMAKIS A. Locally repairable codes[C]//Proceedings of the 2012 International Symposium on Information Theory. Piscataway:IEEE,2012:2771-2775. [18] HIRSCHFELD J W P. Projective Geometries Over Finite Fields:2nd Ed[M]. Oxford:Clarendon Press,1998:23-24. |