[1] 冯岭, 谢世博, 刘斌. 基于多层感知机的技术创新人才发现方法[J]. 计算机应用与软件,2019,36(7):26-31,42.(FENG L, XIE S B,LIU B. A technical innovation talents discovery method based on multi-layer perceptron[J]. Computer Applications and Software,2019,36(7):26-31,42.) [2] 江艳萍, 夏琬钧, 赵颖梅, 等. 基于文献计量方法的全球潜力华人青年学者发现与评价策略研究[J]. 情报杂志,2019,38(7):178-183.(JIANG Y P,XIA W J,ZHAO Y M,et al. Discovery and evaluation strategy for the global potential Chinese young scholars:a research based on bibliometric method[J]. Journal of Intelligence,2019,38(7):178-183.) [3] 王孟頔, 邰泳, 薛安荣. 基于Hadoop平台的人才发现与推荐系统研究[J]. 软件导刊,2014,13(1):4-6.(WANG M D,TAI Y, XUE A R. A discovery and recommendation system for talents based on Hadoop[J]. Software Guide,2014,13(1):4-6.) [4] ZENG J,YU H. A scalable distributed Louvain algorithm for largescale graph community detection[C]//Proceedings of the 2018 IEEE International Conference on Cluster Computing. Piscataway:IEEE,2018:268-278. [5] PARK N,KAN A,DONG X L,et al. Estimating node importance in knowledge graphs using graph neural networks[C]//Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York:ACM,2019:596-606. [6] PARK N,KAN A,DONG X L,et al. MultiImport:inferring node importance in a knowledge graph from multiple input signals[C]//Proceedings of the 26th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York:ACM,2020:503-512. [7] 谢瑞霞, 李秀霞. 基于合著网络的作者影响力评价指标[J]. 情报理论与实践,2019,42(1):100-104.(XIE R X,LI X X. Evaluation indices of author influence based on collaboration network[J]. Information Studies:Theory and Application,2019, 42(1):100-104.) [8] FREEMAN L C. Centrality in social networks conceptual clarification[J]. Social Networks,1979,1(3):215-239. [9] BANGCHAROENSAP P,KOBAYASHI H,SHIMIZU N,et al. Two step graph-based semi-supervised learning for online auction fraud detection[C]//Proceedings of the 2015 Joint European Conference on Machine Learning and Knowledge Discovery in Databases,LNCS 9286. Cham:Springer,2015:165-179. [10] BOUDIN F. A comparison of centrality measures for graph-based keyphrase extraction[C]//Proceedings of the 6th International Joint Conference on Natural Language Processing. Stroudsburg, PA:Association for Computational Linguistics,2013:834-838. [11] 常雨萧. 复杂合著网络分析及可视化[D]. 重庆:重庆邮电大学,2017:31-40. (CHANG Y X. Complex co-authorship network analysis and visualization[D]. Chongqing:Chongqing University of Posts and Telecommunications,2017:31-40.) [12] 娄策群. 社会科学评价的文献计量理论与方法[M]. 武汉:华中师范大学出版社,1999:10-14.(LOU C Q. Bibliometric Theory and Method of Social Science Evaluation[M]. Wuhan:Central China Normal University Press,1999:10-14.) [13] 高伟. 基于InCites数据库的国家重点实验室科研成果评价研究[J]. 图书情报导刊,2018,3(2):57-65,73.(GAO W. Analysis on scientific research achievements evaluation of state key laboratory based on InCites database[J]. Journal of Library and Information Science,2018,3(2):57-65,73.) [14] 张琳, 熊斯攀. 基于Neo4j的社交网络平台设计与实现[J]. 情报探索,2018(8):77-82.(ZHANG L,XIONG S P. Design and implementation of social network platform based on Neo4j[J]. Information Research,2018(8):77-82.) [15] DE MEO P,FERRARA E,FIUMARA G,et al. Generalized Louvain method for community detection in large networks[C]//Proceedings of the 11th International Conference on Intelligent Systems Design and Applications. Piscataway:IEEE, 2011:88-93. [16] CLAUSET A,NEWMAN M E J,MOORE C. Finding community structure in very large networks[J]. Physical Review, E, Statistical,Nonlinear,and Soft Matter Physics,2004,70(6 Pt 2):No. 066111. |