Journal of Computer Applications ›› 2022, Vol. 42 ›› Issue (10): 3259-3267.DOI: 10.11772/j.issn.1001-9081.2021081456
• Frontier and comprehensive applications • Previous Articles Next Articles
Yinping GAO1, Daofang CHANG1, Chun‑Hsien CHEN2
Received:
2021-08-16
Revised:
2021-11-26
Accepted:
2021-11-26
Online:
2022-01-07
Published:
2022-10-10
Contact:
Daofang CHANG
About author:
GAO Yinping, born in 1994, Ph. D. candidate. Her research interests include port operation and optimization, digital twin.Supported by:
高银萍1, 苌道方1, 陈俊贤2
通讯作者:
苌道方
作者简介:
第一联系人:高银萍(1994—),女,江苏泰州人,博士研究生,主要研究方向:港口运营与优化、数字孪生基金资助:
CLC Number:
Yinping GAO, Daofang CHANG, Chun‑Hsien CHEN. Optimization of automated stacking crane operation based on NSGA Ⅱ with dynamic rules in mixed stacking mode[J]. Journal of Computer Applications, 2022, 42(10): 3259-3267.
高银萍, 苌道方, 陈俊贤. 混堆模式下基于动态规则NSGA Ⅱ的自动堆垛起重机作业优化[J]. 《计算机应用》唯一官方网站, 2022, 42(10): 3259-3267.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.joca.cn/EN/10.11772/j.issn.1001-9081.2021081456
目标函数值(f1,f2) | ASC任务编号 | 作业任务 |
---|---|---|
(68,204) | 1 | 15-9-14-6-11 |
2 | 12-8-1-16-18-19-10-5 | |
3 | 2-4-20-17-7 | |
4 | 13-3 | |
(78,158) | 1 | 15-9-14-6-11 |
2 | 12-8 | |
3 | 1-16-18-19-10-5-2 | |
4 | 4-20-17-7-13-3 | |
(81,150) | 1 | 15-9-14-6-11 |
2 | 12-8-1-16-18 | |
3 | 19-10-5-2 | |
4 | 4-20-17-7-13-3 | |
(82,102) | 1 | 15-9-14 |
2 | 6-11-12-8-1-16 | |
3 | 18-19-10-5-2 | |
4 | 4-20-17-7-13-3 | |
(91,108) | 1 | 15-9-14-6 |
2 | 11-12-8-1-16-18 | |
3 | 19-10-5 | |
4 | 2-4-20-17-7-13-3 | |
(96,70) | 1 | 15-9-14-6 |
2 | 11-12-8-1-16-18 | |
3 | 19-10-5-2-4-20-17-7 | |
4 | 13-3 | |
(101,30) | 1 | 15-9-14-6-11-12 |
2 | 8-1-16-18 | |
3 | 19-10-5-2 | |
4 | 4-20-17-7-13-3 |
Tab. 1 Operation schemes of non-dominated solutions
目标函数值(f1,f2) | ASC任务编号 | 作业任务 |
---|---|---|
(68,204) | 1 | 15-9-14-6-11 |
2 | 12-8-1-16-18-19-10-5 | |
3 | 2-4-20-17-7 | |
4 | 13-3 | |
(78,158) | 1 | 15-9-14-6-11 |
2 | 12-8 | |
3 | 1-16-18-19-10-5-2 | |
4 | 4-20-17-7-13-3 | |
(81,150) | 1 | 15-9-14-6-11 |
2 | 12-8-1-16-18 | |
3 | 19-10-5-2 | |
4 | 4-20-17-7-13-3 | |
(82,102) | 1 | 15-9-14 |
2 | 6-11-12-8-1-16 | |
3 | 18-19-10-5-2 | |
4 | 4-20-17-7-13-3 | |
(91,108) | 1 | 15-9-14-6 |
2 | 11-12-8-1-16-18 | |
3 | 19-10-5 | |
4 | 2-4-20-17-7-13-3 | |
(96,70) | 1 | 15-9-14-6 |
2 | 11-12-8-1-16-18 | |
3 | 19-10-5-2-4-20-17-7 | |
4 | 13-3 | |
(101,30) | 1 | 15-9-14-6-11-12 |
2 | 8-1-16-18 | |
3 | 19-10-5-2 | |
4 | 4-20-17-7-13-3 |
任务量 | 算例编号 | 动态策略 | 随机策略 | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
实验1(DRNSGA Ⅱ) | 实验2(GA) | 实验3(DRNSGA Ⅱ) | 实验4(GA) | |||||||||
T1/s | T2/s | T3/s | T4/s | |||||||||
20 | 1 | (83,54) | 100.84 | (99,82) | 156.40 | 32.1 | (109,79) | 201.77 | 37.2 | (115,72) | 261.55 | 36.5 |
2 | (83,63) | 101.44 | (97,86) | 156.44 | 25.3 | (105,77) | 201.43 | 24.7 | (109,90) | 225.26 | 36.3 | |
3 | (85,560) | 100.77 | (100,81) | 175.20 | 28.4 | (104,78) | 164.07 | 29.1 | (109,84) | 162.46 | 36.9 | |
4 | (81,70) | 99.67 | (101,77) | 156.09 | 17.9 | (105,85) | 162.99 | 25.8 | (113,84) | 165.48 | 30.5 | |
5 | (84,56) | 99.25 | (96,82) | 155.25 | 27.1 | (108,80) | 205.22 | 34.3 | (107,84) | 164.12 | 36.4 | |
6 | (87,55) | 117.91 | (102,75) | 155.62 | 24.6 | (106,88) | 147.67 | 36.6 | (111,85) | 157.34 | 38.0 | |
7 | (84,64) | 111.81 | (100,79) | 155.70 | 20.9 | (97,84) | 218.04 | 22.3 | (119,100) | 157.02 | 48.0 | |
8 | (80,53) | 110.02 | (104,73) | 244.40 | 33.1 | (105,76) | 158.30 | 36.1 | (111,80) | 160.96 | 43.6 | |
9 | (84,63) | 112.02 | (98,71) | 142.36 | 15.0 | (106,73) | 153.96 | 21.8 | (112,89) | 190.13 | 36.7 | |
10 | (81,73) | 111.67 | (91,80) | 144.22 | 11.0 | (99,81) | 152.34 | 16.9 | (114,75) | 186.98 | 22.7 | |
平均 | (83,61) | 106.54 | (99,79) | 164.17 | 23.3 | (104,80) | 176.58 | 28.2 | (112,84) | 183.13 | 36.4 | |
50 | 1 | (158,124) | 168.98 | (180,144) | 223.50 | 14.9 | (189,161) | 234.26 | 24.1 | (204,178) | 275.27 | 35.5 |
2 | (156,105) | 163.89 | (180,160) | 227.23 | 30.3 | (199,151) | 235.78 | 34.1 | (207,167) | 297.98 | 43.3 | |
3 | (156,120) | 161.63 | (183,154) | 227.66 | 22.1 | (190,156) | 247.35 | 25.4 | (204,172) | 292.50 | 36.2 | |
4 | (149,103) | 168.95 | (173,154) | 222.73 | 29.8 | (191,150) | 247.21 | 35.3 | (202,175) | 266.89 | 49.6 | |
5 | (154,109) | 167.08 | (183,153) | 222.61 | 27.8 | (184,163) | 242.79 | 31.9 | (206,168) | 290.45 | 42.2 | |
6 | (152,97) | 163.81 | (172,143) | 222.30 | 26.5 | (192,152) | 239.19 | 38.2 | (204,175) | 284.66 | 52.2 | |
7 | (158,99) | 164.60 | (174,131) | 224.32 | 18.7 | (187,159) | 226.62 | 34.6 | (208,172) | 274.49 | 47.9 | |
8 | (155,121) | 166.40 | (175,148) | 221.96 | 17.0 | (182,164) | 236.35 | 25.4 | (203,169) | 277.77 | 34.8 | |
9 | (154,103) | 165.11 | (176,154) | 233.95 | 28.4 | (193,172) | 228.45 | 42.0 | (209,176) | 285.44 | 49.8 | |
10 | (157,98) | 162.39 | (174,162) | 227.93 | 31.8 | (197,167) | 244.81 | 42.7 | (205,174) | 296.67 | 48.6 | |
平均 | (155,108) | 165.28 | (177,150) | 225.42 | 24.3 | (190,160) | 238.28 | 33.1 | (205,173) | 284.21 | 43.7 | |
80 | 1 | (219,148) | 354.22 | (269,224) | 347.19 | 34.3 | (277,252) | 449.91 | 44.1 | (282,267) | 561.29 | 49.6 |
2 | (217,152) | 301.31 | (263,243) | 337.71 | 37.1 | (274,251) | 411.26 | 42.3 | (276,248) | 482.25 | 42.0 | |
3 | (224,158) | 309.70 | (271,214) | 331.44 | 27.0 | (279,224) | 352.42 | 31.7 | (287,263) | 506.93 | 44.0 | |
4 | (226,156) | 276.40 | (269,214) | 395.26 | 26.4 | (276,252) | 294.00 | 38.2 | (284,267) | 517.16 | 44.2 | |
5 | (218,146) | 275.77 | (263,235) | 333.63 | 36.8 | (273,251) | 397.92 | 44.0 | (280,267) | 499.37 | 50.3 | |
6 | (216,151) | 288.55 | (267,225) | 338.17 | 34.1 | (270,252) | 365.48 | 42.2 | (277,265) | 511.69 | 47.7 | |
7 | (211,158) | 294.22 | (261,226) | 333.96 | 32.0 | (272,252) | 353.19 | 42.0 | (285,270) | 513.68 | 50.4 | |
8 | (227,153) | 302.44 | (260,229) | 338.19 | 28.7 | (277,235) | 354.78 | 34.7 | (284,268) | 502.94 | 4.35 | |
9 | (218,147) | 299.74 | (267,235) | 334.03 | 37.5 | (271,256) | 353.97 | 44.4 | (280,266) | 489.63 | 49.6 | |
10 | (216,150) | 294.32 | (262,228) | 336.09 | 33.9 | (282,258) | 353.41 | 47.5 | (286,267) | 399.62 | 51.1 | |
平均 | (219,152) | 299.67 | (265,227) | 342.57 | 32.6 | (275,248) | 368.63 | 41.0 | (282,265) | 498.46 | 47.4 |
Tab. 2 Results of four experiments
任务量 | 算例编号 | 动态策略 | 随机策略 | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
实验1(DRNSGA Ⅱ) | 实验2(GA) | 实验3(DRNSGA Ⅱ) | 实验4(GA) | |||||||||
T1/s | T2/s | T3/s | T4/s | |||||||||
20 | 1 | (83,54) | 100.84 | (99,82) | 156.40 | 32.1 | (109,79) | 201.77 | 37.2 | (115,72) | 261.55 | 36.5 |
2 | (83,63) | 101.44 | (97,86) | 156.44 | 25.3 | (105,77) | 201.43 | 24.7 | (109,90) | 225.26 | 36.3 | |
3 | (85,560) | 100.77 | (100,81) | 175.20 | 28.4 | (104,78) | 164.07 | 29.1 | (109,84) | 162.46 | 36.9 | |
4 | (81,70) | 99.67 | (101,77) | 156.09 | 17.9 | (105,85) | 162.99 | 25.8 | (113,84) | 165.48 | 30.5 | |
5 | (84,56) | 99.25 | (96,82) | 155.25 | 27.1 | (108,80) | 205.22 | 34.3 | (107,84) | 164.12 | 36.4 | |
6 | (87,55) | 117.91 | (102,75) | 155.62 | 24.6 | (106,88) | 147.67 | 36.6 | (111,85) | 157.34 | 38.0 | |
7 | (84,64) | 111.81 | (100,79) | 155.70 | 20.9 | (97,84) | 218.04 | 22.3 | (119,100) | 157.02 | 48.0 | |
8 | (80,53) | 110.02 | (104,73) | 244.40 | 33.1 | (105,76) | 158.30 | 36.1 | (111,80) | 160.96 | 43.6 | |
9 | (84,63) | 112.02 | (98,71) | 142.36 | 15.0 | (106,73) | 153.96 | 21.8 | (112,89) | 190.13 | 36.7 | |
10 | (81,73) | 111.67 | (91,80) | 144.22 | 11.0 | (99,81) | 152.34 | 16.9 | (114,75) | 186.98 | 22.7 | |
平均 | (83,61) | 106.54 | (99,79) | 164.17 | 23.3 | (104,80) | 176.58 | 28.2 | (112,84) | 183.13 | 36.4 | |
50 | 1 | (158,124) | 168.98 | (180,144) | 223.50 | 14.9 | (189,161) | 234.26 | 24.1 | (204,178) | 275.27 | 35.5 |
2 | (156,105) | 163.89 | (180,160) | 227.23 | 30.3 | (199,151) | 235.78 | 34.1 | (207,167) | 297.98 | 43.3 | |
3 | (156,120) | 161.63 | (183,154) | 227.66 | 22.1 | (190,156) | 247.35 | 25.4 | (204,172) | 292.50 | 36.2 | |
4 | (149,103) | 168.95 | (173,154) | 222.73 | 29.8 | (191,150) | 247.21 | 35.3 | (202,175) | 266.89 | 49.6 | |
5 | (154,109) | 167.08 | (183,153) | 222.61 | 27.8 | (184,163) | 242.79 | 31.9 | (206,168) | 290.45 | 42.2 | |
6 | (152,97) | 163.81 | (172,143) | 222.30 | 26.5 | (192,152) | 239.19 | 38.2 | (204,175) | 284.66 | 52.2 | |
7 | (158,99) | 164.60 | (174,131) | 224.32 | 18.7 | (187,159) | 226.62 | 34.6 | (208,172) | 274.49 | 47.9 | |
8 | (155,121) | 166.40 | (175,148) | 221.96 | 17.0 | (182,164) | 236.35 | 25.4 | (203,169) | 277.77 | 34.8 | |
9 | (154,103) | 165.11 | (176,154) | 233.95 | 28.4 | (193,172) | 228.45 | 42.0 | (209,176) | 285.44 | 49.8 | |
10 | (157,98) | 162.39 | (174,162) | 227.93 | 31.8 | (197,167) | 244.81 | 42.7 | (205,174) | 296.67 | 48.6 | |
平均 | (155,108) | 165.28 | (177,150) | 225.42 | 24.3 | (190,160) | 238.28 | 33.1 | (205,173) | 284.21 | 43.7 | |
80 | 1 | (219,148) | 354.22 | (269,224) | 347.19 | 34.3 | (277,252) | 449.91 | 44.1 | (282,267) | 561.29 | 49.6 |
2 | (217,152) | 301.31 | (263,243) | 337.71 | 37.1 | (274,251) | 411.26 | 42.3 | (276,248) | 482.25 | 42.0 | |
3 | (224,158) | 309.70 | (271,214) | 331.44 | 27.0 | (279,224) | 352.42 | 31.7 | (287,263) | 506.93 | 44.0 | |
4 | (226,156) | 276.40 | (269,214) | 395.26 | 26.4 | (276,252) | 294.00 | 38.2 | (284,267) | 517.16 | 44.2 | |
5 | (218,146) | 275.77 | (263,235) | 333.63 | 36.8 | (273,251) | 397.92 | 44.0 | (280,267) | 499.37 | 50.3 | |
6 | (216,151) | 288.55 | (267,225) | 338.17 | 34.1 | (270,252) | 365.48 | 42.2 | (277,265) | 511.69 | 47.7 | |
7 | (211,158) | 294.22 | (261,226) | 333.96 | 32.0 | (272,252) | 353.19 | 42.0 | (285,270) | 513.68 | 50.4 | |
8 | (227,153) | 302.44 | (260,229) | 338.19 | 28.7 | (277,235) | 354.78 | 34.7 | (284,268) | 502.94 | 4.35 | |
9 | (218,147) | 299.74 | (267,235) | 334.03 | 37.5 | (271,256) | 353.97 | 44.4 | (280,266) | 489.63 | 49.6 | |
10 | (216,150) | 294.32 | (262,228) | 336.09 | 33.9 | (282,258) | 353.41 | 47.5 | (286,267) | 399.62 | 51.1 | |
平均 | (219,152) | 299.67 | (265,227) | 342.57 | 32.6 | (275,248) | 368.63 | 41.0 | (282,265) | 498.46 | 47.4 |
任务量N | 算例 | DRNSGA Ⅱ | MOPSO | |||
---|---|---|---|---|---|---|
目标函数值(f1,f2) | 计算时间/s | 目标函数值(f1,f2) | 计算时间/s | 差值/% | ||
100 | 1 | (309,331) | 362.65 | (326,329) | 502.34 | 2.3 |
2 | (314,334) | 417.10 | (331,338) | 517.10 | 3.2 | |
平均 | (312,333) | 389.88 | (329,334) | 509.72 | 2.8 | |
150 | 1 | (483,514) | 456.52 | (508,524) | 573.65 | 3.5 |
2 | (495,515) | 461.74 | (514,530) | 588.21 | 3.4 | |
平均 | (489,515) | 459.13 | (511,527) | 580.93 | 3.4 | |
200 | 1 | (604,611) | 553.46 | (644,651) | 691.12 | 6.6 |
2 | (605,615) | 556.89 | (649,655) | 696.16 | 6.9 | |
平均 | (605,613) | 555.18 | (647,653) | 693.64 | 6.7 |
Tab. 3 Comparison results of DRNSGA Ⅱ and MOPSO algorithm
任务量N | 算例 | DRNSGA Ⅱ | MOPSO | |||
---|---|---|---|---|---|---|
目标函数值(f1,f2) | 计算时间/s | 目标函数值(f1,f2) | 计算时间/s | 差值/% | ||
100 | 1 | (309,331) | 362.65 | (326,329) | 502.34 | 2.3 |
2 | (314,334) | 417.10 | (331,338) | 517.10 | 3.2 | |
平均 | (312,333) | 389.88 | (329,334) | 509.72 | 2.8 | |
150 | 1 | (483,514) | 456.52 | (508,524) | 573.65 | 3.5 |
2 | (495,515) | 461.74 | (514,530) | 588.21 | 3.4 | |
平均 | (489,515) | 459.13 | (511,527) | 580.93 | 3.4 | |
200 | 1 | (604,611) | 553.46 | (644,651) | 691.12 | 6.6 |
2 | (605,615) | 556.89 | (649,655) | 696.16 | 6.9 | |
平均 | (605,613) | 555.18 | (647,653) | 693.64 | 6.7 |
1 | 范厚明,马梦知,姚茜,等. 集装箱堆场箱位分配及多场桥调度协同优化问题[J]. 上海交通大学学报, 2017, 51(11):1367-1373. 10.16183/j.cnki.jsjtu.2017.11.013 |
FAN H M, MA M Z, YAO X, et al. Integrated optimization of storage space allocation and multiple yard cranes scheduling in a container terminal yard[J]. Journal of Shanghai Jiao Tong University, 2017, 51(11): 1367-1373. 10.16183/j.cnki.jsjtu.2017.11.013 | |
2 | WU Y, LI W K, PETERING M E H, et al. Scheduling multiple yard cranes with crane interference and safety distance requirement[J]. Transportation Science, 2015, 49(4): 990-1005. 10.1287/trsc.2015.0641 |
3 | HAN X L, WANG Q Q, HUANG J W. Scheduling cooperative twin automated stacking cranes in automated container terminals[J]. Computers and Industrial Engineering, 2019, 128: 553-558. 10.1016/j.cie.2018.12.039 |
4 | KRESS D, DORNSEIFER J, JAEHN F, et al. An exact solution approach for scheduling cooperative gantry cranes[J]. European Journal of Operational Research, 2019, 273(1):82-101. 10.1016/j.ejor.2018.07.043 |
5 | SPEER U, FISCHER K. Scheduling of different automated yard crane systems at container terminals[J]. Transportation Science, 2017, 51(1):305-324. 10.1287/trsc.2016.0687 |
6 | GHAREHGOZLI A H, VERNOOIJ F G, ZAERPOUR N. A simulation study of the performance of twin automated stacking cranes at a seaport container terminal[J]. European Journal of Operational Research, 2017, 261(1):108-128. 10.1016/j.ejor.2017.01.037 |
7 | YU K, YANG J C. MILP Model and a rolling horizon algorithm for crane scheduling in a hybrid storage container terminal[J]. Mathematical Problems in Engineering, 2019, 2019: No.4739376. 10.1155/2019/4739376 |
8 | 郑红星,于凯,李芳芳,等. 考虑外集卡的混堆集装箱码头多场桥调度[J]. 计算机集成制造系统, 2014, 20(12):3161-3169. |
ZHENG H X, YU K, LI F F, et al. Multi-yard cranes scheduling in mixed storage port container terminals considering external container trucks[J]. Computer Integrated Manufacturing Systems, 2014, 20(12): 3161-3169. | |
9 | 郑红星,董译文,匡海波,等. 考虑倒箱的混堆装船箱区内场桥调度优化[J]. 系统工程理论与实践, 2016, 36(9):2362-2373. 10.12011/1000-6788(2016)09-2362-12 |
ZHENG H X, DONG Y W, KUANG H B, et al. Yard cranes scheduling with relocation at a mixed storage block for ship loading[J]. Systems Engineering—Theory and Practice, 2016, 36(9): 2362-2373. 10.12011/1000-6788(2016)09-2362-12 | |
10 | 周磊磊,梁承姬,胡筱渊. 不确定干扰约束下外集卡提箱策略[J]. 计算机应用, 2020, 40(3): 891-896. |
ZHOU L L, LIANG C J, HU X Y. Delivery trucks strategy under uncertain interference constraints[J]. Journal of Computer Applications, 2020, 40(3): 891-896. | |
11 | 邵乾虔,徐奇,边展,等. 考虑了交箱时间不确定性的场桥堆存作业优化[J]. 系统工程理论与实践, 2015, 35(2): 394-405. 10.12011/1000-6788(2015)2-394 |
SHAO Q Q, XU Q, BIAN Z, et al. Stockpiling operation optimization for yard crane with containers delivery time uncertainty[J]. Systems Engineering—Theory and Practice, 2015, 35(2): 394-405. 10.12011/1000-6788(2015)2-394 | |
12 | ZHENG F F, MAN X Y, CHU F, et al. A two-stage stochastic programming for single yard crane scheduling with uncertain release times of retrieval tasks[J]. International Journal of Production Research, 2019, 57(13):4132-4147. 10.1080/00207543.2018.1516903 |
13 | HE J L, TAN C M, ZHANG Y T. Yard crane scheduling problem in a container terminal considering risk caused by uncertainty[J]. Advanced Engineering Informatics, 2019, 39:14-24. 10.1016/j.aei.2018.11.004 |
14 | ZENG Q C, FENG Y J, YANG Z Z. Integrated optimization of pickup sequence and container rehandling based on partial truck arrival information[J]. Computers and Industrial Engineering, 2019, 127: 366-382. 10.1016/j.cie.2018.10.024 |
15 | 马梦知,范厚明,计明军,等. 集装箱码头送箱集卡预约与场桥调度协同优化[J]. 交通运输系统工程与信息, 2018, 18(3): 202-209. |
MA M Z, FAN H M, JI M J, et al. Integrated optimization of truck appointment for export containers and crane deployment in a container terminal[J]. Journal of Transportation Systems Engineering and Information Technology, 2018, 18(3): 202-209. | |
16 | 李娜,边展,徐奇,等. 集卡提箱预约配额与场桥配置的联合优化[J]. 交通运输系统工程与信息, 2019, 19(6): 206-214, 222. |
LI N, BIAN Z, XU Q, et al. Optimization of quotas and yard crane allocation in pick-up truck appointment[J]. Journal of Transportation Systems Engineering and Information Technology, 2019, 19(6): 206-214, 222. | |
17 | KUCUKSAYACIGIL F, ULUSOY G. Hybrid genetic algorithm for bi-objective resource-constrained project scheduling[J]. Frontiers of Engineering Management, 2020, 7(3): 426-446. 10.1007/s42524-020-0100-x |
18 | LIU M, LEE C Y, ZHANG Z Z, et al. Bi-objective optimization for the container terminal integrated planning[J]. Transportation Research Part B: Methodological, 2016, 93(Pt B):720-749. 10.1016/j.trb.2016.05.012 |
19 | HU Z H, SHEU J B, LUO J X. Sequencing twin automated stacking cranes in a block at automated container terminal[J]. Transportation Research Part C: Emerging Technologies, 2016, 69: 208-227. 10.1016/j.trc.2016.06.004 |
[1] | ZHANG Minlong, WANG Tao, WANG Xuping, CHANG Hongwei, WANG Fang. Step dynamic auto-regression kernel principal component analysis and its application in fault diagnosis [J]. Journal of Computer Applications, 2016, 36(5): 1464-1468. |
[2] | ZHOU Jingxian, HU Zhihua. Scheduling optimization for cross-over twin automated stacking cranes in automated container terminal [J]. Journal of Computer Applications, 2015, 35(9): 2673-2677. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||