| 1 | YANG X, TANG K, ZHANG H, et al. Auto-encoding scene graphs for image captioning [C]// Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2019: 10677-10686. | 
																													
																							| 2 | GAO L, LEI Y, ZENG P, et al. Hierarchical representation network with auxiliary tasks for video captioning and video question answering [J]. IEEE Transactions on Image Processing, 2022, 31: 202-215. | 
																													
																							| 3 | WANG S, WANG R, YAO Z, et al. Cross-modal scene graph matching for relationship-aware image-text retrieval [C]// Proceedings of the 2020 IEEE Winter Conference on Applications of Computer Vision. Piscataway: IEEE, 2020: 1497-1506. | 
																													
																							| 4 | JOHNSON J. GUPTA A. LI F F. Image generation from scene graphs [C]// Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2018: 1219-1228. | 
																													
																							| 5 | CARION N, MASSA F, SYNNAEVE G, et al. End-to-end object detection with Transformers [C]// Proceedings of the 2020 European Conference on Computer Vision, LNCS 12346. Cham: Springer, 2020: 213-229. | 
																													
																							| 6 | ZHANG H, KYAW Z, CHANG S F, et al. Visual translation embedding network for visual relation detection [C]// Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2017: 3107-3115. | 
																													
																							| 7 | GU J, HU H, WANG L, et al. Learning region features for object detection[C]// Proceedings of the 2018 European Conference on Computer Vision, LNCS 11216. Cham: Springer, 2018: 392-406. | 
																													
																							| 8 | KRISHNA R, ZHU Y, GROTH O, et al. Visual genome: connecting language and vision using crowdsourced dense image annotations[J]. International Journal of Computer Vision, 2017, 123(1): 32-73. | 
																													
																							| 9 | HOCHREITER S, SCHMIDHUBER J. Long short-term memory[J]. Neural Computation, 1997, 9(8): 1735-1780. | 
																													
																							| 10 | SCARSELLI F, GORI M, TSOI A C, et al. The graph neural network model [J]. IEEE Transactions on Neural Networks, 2009, 20(1): 61-80. | 
																													
																							| 11 | TANG K, ZHANG H, WU B, et al. Learning to compose dynamic tree structures for visual contexts[C]// Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2019: 6612-6621. | 
																													
																							| 12 | XU D, ZHU Y, CHOY C B, et al. Scene graph generation by iterative message passing[C]// Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2017: 3097-3106. | 
																													
																							| 13 | YANG J, LU J, LEE S, et al. Graph R-CNN for scene graph generation [C]// Proceedings of the 2018 European Conference on Computer Vision, LNCS 11205. Cham: Springer, 2018: 690-706. | 
																													
																							| 14 | WANG W, WANG R, SHAN S, et al. Sketching image gist: human-mimetic hierarchical scene graph generation[C]// Proceedings of the 2020 European Conference on Computer Vision, LNCS 12358. Cham: Springer, 2020: 222-239. | 
																													
																							| 15 | WANG W, WANG R, SHAN S, et al. Exploring context and visual pattern of relationship for scene graph generation[C]// Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2019: 8180-8189. | 
																													
																							| 16 | YOON K, KIM K, MOON J, et al. Unbiased heterogeneous scene graph generation with relation-aware message passing neural network[C]// Proceedings of the 37th AAAI Conference on Artificial Intelligence. Palo Alto: AAAI Press, 2023: 3285-3294. | 
																													
																							| 17 | TANG K, NIU Y, HUANG J, et al. Unbiased scene graph generation from biased training[C]// Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2020: 3713-3722. | 
																													
																							| 18 | LI R, ZHANG S, WAN B, et al. Bipartite graph network with adaptive message passing for unbiased scene graph generation[C]// Proceedings of the 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2021: 11104-11114. | 
																													
																							| 19 | SUHAIL M, MITTAL A, SIDDIQUIE B, et al. Energy-based learning for scene graph generation [C]// Proceedings of the 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2021: 13931-13940. | 
																													
																							| 20 | YU J, CHAI Y, WANG Y, et al. CogTree: cognition tree loss for unbiased scene graph generation[C]// Proceedings of the 30th International Joint Conference on Artificial Intelligence. California: IJCAI.org, 2021: 1274-1280. | 
																													
																							| 21 | WANG K, XU X, LIU Y, et al. A Pre-LN Transformer network model with lexical features for fine-grained sentiment classification[C]// Proceedings of the 2021 China Conference on Information Retrieval, LNCS 13026. Cham: Springer, 2021: 100-111. | 
																													
																							| 22 | GOEL A, FERNANDO B, KELLER F, et al. Not all relations are equal: mining informative labels for scene graph generation[C]// Proceedings of the 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2022: 15575-15585. | 
																													
																							| 23 | LI L, CHEN L, HUANG Y, et al. The devil is in the labels: noisy label correction for robust scene graph generation[C]// Proceedings of the 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2022: 18847-18856. | 
																													
																							| 24 | LI W, ZHANG H, BAI Q, et al. PPDL: predicate probability distribution based loss for unbiased scene graph generation[C]// Proceedings of the 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2022: 19425-19434. | 
																													
																							| 25 | CHEN C, ZHAN Y, YU B, et al. Resistance training using prior bias: toward unbiased scene graph generation [C]// Proceedings of the 36th AAAI Conference on Artificial Intelligence. Palo Alto: AAAI Press, 2022: 212-220. | 
																													
																							| 26 | REN S, HE K, GIRSHICK R, et al. Faster R-CNN: towards real-time object detection with region proposal networks[C]// Proceedings of the 28th International Conference on Neural Information Processing Systems — Volume 1. Cambridge: MIT Press, 2015: 91-99. | 
																													
																							| 27 | ZELLERS R, YASTSKAR M, THOMSON S, et al. Neural motifs: scene graph parsing with global context [C]// Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2018: 5831-5840. |