Journals
  Publication Years
  Keywords
Search within results Open Search
Please wait a minute...
For Selected: Toggle Thumbnails
Driver behavior recognition based on dual-path spatiotemporal network
Zhiyuan XI, Chao TANG, Anyang TONG, Wenjian WANG
Journal of Computer Applications    2024, 44 (5): 1511-1519.   DOI: 10.11772/j.issn.1001-9081.2023050800
Abstract246)   HTML14)    PDF (3642KB)(231)       Save

Dangerous driving behavior of drivers is one of the main causes of vicious traffic accidents, so identifying driver’s behavior is of great significance for engineering applications. Currently, the mainstream vision-based detection methods are to study the local spatiotemporal features of driver behavior, and less research is done on global spatial features and long-term temporal correlation features, which to a certain extent cannot be combined with the scene context information to identify dangerous driving behaviors. To solve the above problems, a driver behavior recognition method based on a dual-path spatiotemporal network was proposed, which integrated the advantages of different spatiotemporal pathways to improve the richness of behavioral features. Firstly, an improved Two-Stream convolutional Network (TSN) was used to learn the spatiotemporal information for characterization while reducing the sparsity of extracted features. Secondly, a Transformer-based serial spatiotemporal network was constructed to supplement the long-term temporal correlation information. Finally, a fusion decision was made using a dual-path spatiotemporal network to enhance the robustness of the model. Experimental results show that the proposed method achieves recognition accuracies of 99.85%, 99.94% and 98.77% on three publicly available datasets: a driver fatigue detection dataset YawDD, a driver distraction detection dataset SF-DDDD (State-Farm Distracted Driver Detection Dataset), and a the latest driver behavior recognition dataset SynDD1, respectively; especially on SynDD1, the recognition accuracy is improved by 1.64 percentage points compared to MoviNet-A0, a recognition network by motion. Ablation experimental results confirm that the proposed method has high recognition accuracy of driver behavior.

Table and Figures | Reference | Related Articles | Metrics