To address the lack of sufficient paired multi-track music score datasets in the field of music representation learning, a music generation pre-training model was proposed. Firstly, a multi-generator model based on Transformers named MMGPNet (Multi-track Music Generation with Pre-training Network) as the baseline model was proposed as the fact that multi-track music generation needs to ensure continuity within the single track and harmony between the tracks at the same time. Secondly, in order to use sufficient single track musical instrument datasets, a music pre-training module was designed on the generation model. Finally, a reconstruction task was designed during the pre-training process to mask the properties of musical notations and rebuild them. Experimental results show that the proposed model accelerates training process of the model and improves the prediction accuracy. Besides, compared with baseline models such as MuseGAN (Multi-track sequential Generative Adversarial Network) and SymphonyNet, various music evaluation metrics of the generated multi-track sequences are closer to the real music. The listening test further proves the validity of the proposed model.
When the Unmanned Aerial Vehicle (UAV) cluster attacks ground targets, it will be divided into two formations: a strike UAV cluster that attacks the targets and a auxiliary UAV cluster that pins down the enemy. When auxiliary UAVs choose the action strategy of aggressive attack or saving strength, the mission scenario is similar to a public goods game where the benefits to the cooperator are less than those to the betrayer. Based on this, a decision method for cooperative combat of UAV clusters based on deep reinforcement learning was proposed. First, by building a public goods game based UAV cluster combat model, the interest conflict problem between individual and group in cooperation of intelligent UAV clusters was simulated. Then, Muti-Agent Deep Deterministic Policy Gradient (MADDPG) algorithm was used to solve the most reasonable combat decision of the auxiliary UAV cluster to achieve cluster victory with minimum loss cost. Training and experiments were performed under conditions of different numbers of UAV. The results show that compared to the training effects of two algorithms — IDQN (Independent Deep Q-Network) and ID3QN (Imitative Dueling Double Deep Q-Network), the proposed algorithm has the best convergence, its winning rate can reach 100% with four auxiliary UAVs, and it also significantly outperforms the comparison algorithms with other UAV numbers.
Human pose estimation is one of the basic tasks in computer vision, which can be applied to the fields such as action recognition, games, and animation production. The current designs of deep network model mostly use deepening the network to obtain better performance. As a result, the demand for computing resources is beyond the computing power of embedded devices and mobile devices, and the requirements of actual applications can not be met. In order to solve the problems, a new lightweight network model integrating Ghost module structure was proposed, that is, the Ghost module was used to replace the basic module in the original high-resolution network, thereby reducing the number of network parameters. In addition, a non-local high-resolution network was designed, that is, the non-local network module was fused in the 1/32 resolution stage of the network, so that the network has the ability to obtain global features, thereby improving the accuracy of human pose estimation, and reducing the network parameters while ensuring the accuracy of model. Experiments were carried out on the human pose estimation datasets such as Max Planck Institut Informatik (MPII) and the Common Objects in COntext (COCO).Experimental results indicate that, compared with the original high-resolution network, the proposed network model has the accuracy of human pose estimation increased by 1.8 percentage points with the number of network parameters reduced by 40%.
Band selection can effectively reduce the spatial redundancy of hyperspectral data and provide effective support for subsequent classification. Multi-kernel fuzzy rough set model is able to analyze numerical data containing uncertainty and approximate description, and grasshopper optimization algorithm can solve optimization problem with strong exploration and development capabilities. Multi-kernelized fuzzy rough set model was introduced into hyperspectral uncertainty analysis modeling, grasshopper optimization algorithm was used to select the subset of bands, then a hyperspectral band selection algorithm based on multi-kernel fuzzy rough set and grasshopper optimization algorithm was proposed. Firstly, the multi-kernel operator was used to measure the similarity in order to improve the adaptability of the model to data distribution. The correlation measure of bands based on the kernel fuzzy rough set was determined, and the correlation between bands was measured by the lower approximate distribution of ground objects at different pixel points in fuzzy rough set. Then, the band dependence, band information entropy and band correlation were considered comprehensively to define the fitness function of band subset. Finally, with J48 and K-Nearest Neighbor ( KNN) adopted as the classifier algorithms, the proposed algorithm was compared with Band Correlation Analysis (BCA) and Normalized Mutual Information (NMI) algorithms in the classification performance on a common hyperspectral dataset Indiana Pines agricultural area. The experimental results show that the proposed algorithm has the overall average classification accuracy increased by 2.46 and 1.54 percentage points respectively when fewer bands are selected.
The problem of misclassification of minority class samples appears frequently when classifying massive amount of imbalanced data in real life with traditional classification algorithms, because most of these algorithms only suit balanced class distribution or samples with same misclassification cost. To overcome this problem, a classification algorithm for imbalanced dataset based on cost sensitive ensemble learning and oversampling-New Imbalanced Boost (NIBoost) was proposed. Firstly, the oversampling algorithm was used to add a certain number of minority samples to balance the dataset in each iteration, and the classifier was trained on the new dataset. Secondly, the classifier was used to classify the dataset to obtain the predicted class label of each sample and the classification error rate of the classifier. Finally, the weight coefficient of the classifier and new weight of each sample were calculated according to the classification error rate and the predicted class labeles. Experimental results on UCI datasets with decision tree and Naive Bayesian used as weak classifier algorithm show that when decision tree was used as the base classifier of NIBoost, compared with RareBoost algorithm, the F-value is increased up to 5.91 percentage points, the G-mean is increased up to 7.44 percentage points, and the AUC is increased up to 4.38 percentage points. The experimental results show that the proposed algorithm has advantages on imbalanced data classification problem.
A spatial co-location pattern represents a subset of spatial features whose instances are frequently located together in spatial neighborhoods. The existing interesting metrics for spatial co-location pattern mining do not take account of the difference between features and the diversity between instances belonging to the same feature. In addition, using the traditional data-driven spatial co-location pattern mining method, the mining results often contain a lot of useless or uninteresting patterns. In view of the above problems, firstly, a more general study object-spatial instance with utility value was proposed, and the Utility Participation Index (UPI) was defined as the new interesting metric of the spatial high utility co-location patterns. Secondly, the domain knowledge was formalized into three kinds of semantic rules and applied to the mining process, and a new domain-driven iterative mining framework was put forward. Finally, by the extensive experiments, the differences between mined results with different interesting metrics were compared in two aspects of utility ratio and frequency, as well as the changes of the mining results after taking the domain knowledge into account. Experimental results show that the proposed UPI metric is a more reasonable measure in consideration of both frequency and utility, and the domain-driven mining method can effectively find the co-location patterns that users are really interested in.
Since the Bit Error Rate (BER) of the Blind Source Separation (BSS) of mixed digital modulation signals under the noisy environment is excessively high, a two-stage blind source separation algorithm named R-TSBS was proposed based on RobustICA (Robust Independent Component Analysis). Firstly, the algorithm used RobustICA to estimate the mixing matrix consisting of array response vector. In the second phase, each symbol sequence transmitted by digital modulation source signal was estimated by Maximum Likelihood Estimation (MLE) method using the finite symbol values character. Finally, R-TSBS achieved the purpose of blind source separation. The simulation results show that, when the Signal to Noise Ratio (SNR) is 10 dB, the BER of traditional Independent Component Analysis (ICA) algorithm such as FastICA (Fast Independent Component Analysis) and RobustICA reached 3.5×10-2, which is exactly high. However, the BER of the two-stage blind source separation on the basis of FastICA algorithm which named F-TSBS and the proposed R-TSBS algorithm dropped to 10-3, the separation performance has been significantly improved. At the same time, R-TSBS algorithm can obtain about 2 dB performance increase in low SNR (0~4 dB) compared to F-TSBS algorithm.
The research of dissemination effect of micro-blog message has an important role in improving marketing, strengthening public opinion monitoring and discovering hotspots accurately. Focused on difference between individuals which was not considered previously, this paper proposed a method of predicting scale and depth of retweeting based on behavior analysis. This paper presented a predictive model of retweet behavior with Logistic Regression (LR) algorithm and extracted nine relative features from users, relationship and content. Based on this model, this paper proposed the above predicting method which considered the character of information disseminating along users and iterative statistical analysis of adjacent users step by step. The experimental results on Sina micro-blog dataset show that the accuracy rate of scale and depth prediction approximates 87.1% and 81.6 respectively, which can predict the dissemination effect well.
The traditional graph-based recommendation algorithm neglects the combined time factor which results in the poor recommendation quality. In order to solve this problem, a personalized recommendation algorithm integrating roulette walk and combined time effect was proposed. Based on the user-item bipartite graph, the algorithm introduced attenuation function to quantize combined time factor as association probability of the nodes; Then roulette selection model was utilized to select the next target node according to those associated probability of the nodes skillfully; Finally, the top-N recommendation for each user was provided. The experimental results show that the improved algorithm is better in terms of precision, recall and coverage index, compared with the conventional PersonalRank random-walk algorithm.
According to the shape features of wind shear images extracted by wavelet invariant moment based on cubic B-spline wavelet basis, an improved Genetic Algorithm (GA) was proposed to apply to the type recognition of microburst, low-level jet stream, side wind shear and tailwind-or-headwind shear. In the improved algorithm, the adaptive crossover probability only considered the number of generation and mutation probability just emphasized the fitness valve of individuals and group, so that it could control the evolution direction uniformly, and greatly maintain the population diversity simultaneously. Lastly, the best feature subset chosen by the improved genetic algorithm was fed into 3-nearest neighbor classifier to classify. The experimental results show that it has a good direction and be able to rapidly converge to the global optimal solution, and then steadily chooses the critical feature subset in order to obtain a better performance of wind shear recognition that the mean recognition rate can reach more than 97% at last.
In order to solve the problems, such as facial change and uneven gray, caused by the variations of expression and illumination in face recognition, a novel feature extraction method based on Sub-pattern Row-Column Two-Dimensional Linear Discriminant Analysis (Sp-RC2DLDA) was proposed. In the proposed method, by dividing the original images into smaller sub-images, the local features could be extracted effectively, and the impact of variations in facial expression and illumination was reduced. Also, by combining the sub-images at the same position as a subset, the recognition performance could be improved for making full use of the spatial relationship among sub-images. At the same time, two classes of features which complemented each other can be obtained by synthesizing the local sub-features which were achieved by performing 2DLDA (Two-Dimensional Linear Discriminant Analysis) and Extend 2DLDA (E2DLDA) on a set of partitioned sub-patterns in the row and column directions, respectively. Then, the recognition performance was expected to be improved by employing a fusion method to effectively fuse these two classes of complementary features. Finally, nearest neighbor classifier was applied for classification. The experimental results on Yale and ORL face databases show that the proposed Sp-RC2DLDA method reduces the influence of variations in illumination and facial expression effectively, and has better robustness and classification performance than the other related methods.