Journals
  Publication Years
  Keywords
Search within results Open Search
Please wait a minute...
For Selected: Toggle Thumbnails
Reconstruction algorithm for undersampled magnetic resonance images based on complex convolution dual-domain cascade network
Hualu QIU, Suzhen LIN, Yanbo WANG, Feng LIU, Dawei LI
Journal of Computer Applications    2024, 44 (2): 580-587.   DOI: 10.11772/j.issn.1001-9081.2023020187
Abstract135)   HTML4)    PDF (2360KB)(109)       Save

At present, most accelerated Magnetic Resonance Imaging (MRI) reconstruction algorithms reconstruct undersampled amplitude images and use real-value convolution for feature extraction, without considering that the MRI data itself is complex, which limits the feature extraction ability of MRI complex data. In order to improve the feature extraction ability of single slice MRI complex data, and thus reconstruct single slice MRI images with clearer details, a Complex Convolution Dual-Domain Cascade Network (ComConDuDoCNet) was proposed. The original undersampled MRI data was used as input, and Residual Feature Aggregation (RFA) blocks were used to alternately extract the dual domain features of the MRI data, ultimately reconstructing the Magnetic Resonance (MR) images with clear texture details. Complex convolution was used as a feature extractor for each RFA block. Different domains were cascaded through Fourier transform or inverse transform, and data consistency layer was added to achieve data fidelity. A large number of experiments were conducted on publicly available knee joint dataset. The comparison results with the Dual-task Dual-domain Network (DDNet) under three different sampling masks with a sampling rate of 20% show that: under the two-dimensional Gaussian sampling mask, the proposed algorithm decreases Normalized Root Mean Square Error (NRMSE) by 13.6%, increases Peak Signal-to-Noise Ratio (PSNR) by 4.3%, and increases Structural SIMilarity (SSIM) by 0.8%; under the Poisson sampling mask, the proposed algorithm decreases NRMSE by 11.0%, increases PSNR by 3.5%, and increases SSIM by 0.1%; under the radial sampling mask, the proposed algorithm decreases NRMSE by 12.3%, increases PSNR by 3.8%, and increases SSIM by 0.2%. The experimental results show that ComConDuDoCNet, combined with complex convolution and dual-domain learning, can reconstruct MR images with clearer details and more realistic visual effects.

Table and Figures | Reference | Related Articles | Metrics