Towards the large frequency offset caused by Doppler effect in high speed moving environment, a dynamic state space model of Orthogonal Frequency Division Multiplexing (OFDM) was built, and a kind of frequency offset tracking and estimation algorithm in OFDM based on improved Strong Tracking Unscented Kalman Filter (STUKF) was proposed. By combining strong tracking filter theory and UKF together, the fading factor was introduced during the process of calculating the measurement predictive covariance and cross covariance. The frequency offset estimation error covariance was adjusted; meanwhile, the process noise covariance was also controlled, and the gain matrix was adjusted in real-time. So the tracking ability to time-varying frequency offset was enhanced and the estimated accuracy was raised. The simulation test was carried out in time-invariant and time-varying frequency offset models. The simulation results show that the proposed algorithm has better tracking and estimation performance than the UKF frequency offset estimation algorithm, the Signal-to-Noise Ratio (SNR) raises about 1dB under the same Bit Error Rate (BER).