The recognition accuracy rate of traditional Sparse Representation Classification (SRC) algorithm is relatively low under the interference of complex non-face ingredient, large training sample set and high similarity between the training samples. To solve these problems, a novel face recognition algorithm based on Cluster-Sparse of Active Appearance Model (CS-AAM) was proposed. Firstly, Active Appearance Model (AAM) rapidly and accurately locate facial feature points and to get the main information of the face. Secondly, K-means clustering was run on the training sample set, the images with high similarity degree were assigned to a category and the clustering center was calculated. Then, the center was used as atomic to structure over-complete dictionary and do sparse decomposition. Finally, face images were classified and recognized by computing sparse coefficients and reconstruction residuals. The face images with different samples and different dimensions from ORL face database and Extended Yale B face database were tested for comparing CS-AAM with Nearest Neighbor (NN), Support Vector Machine (SVM), Sparse Representation Classification (SRC), and Collaborative Representation Classification (CRC). The recognition rate of CS-AAM algorithm is higher than other algorithms with the same samples or the same dimensions. Under the same dimensions, the recognition rate of CS-AAM is 95.2% when the selected number of samples is 210 on ORL face database; the recognition rate of CS-AAM is 96.8% when the selected number of samples is 600 on Extended Yale B face database. The experimental results demonstrate that the proposed method has higher recognition accuracy rate.
When using Linear Deconvolution (LD) algorithm in the selection process, endmembers subset has similar endmembers and similar endmembers have an impact on the accuracy of spectral unmixing,a hyperspectral unmixing optimization algorithm based on per-pixel optimal endmember selection named Spectral Information Divergence (SID) and Spectral Angle Mapping (SAM) was proposed. At the end of the second choice, the method adopted Spectral Information Divergence mixed with Spectral Angle (SID-SA) rule as the most similar endmember selection criteria, removed the similar endmembers and reduced the effect of the accuracy by spectral unmixing. The experiment results show that hyperspectral unmixing optimization algorithm based on SID and SAM makes Root Mean Square Error (RMSE) of reconstruction images be reduced to 0.0104. This method improves the accuracy of endmember selection in comparison with traditional method, reduces abundance estimation error and error distributes more evenly.
A block resource scheduling strategy for remote sensing images in multi-line server environment was proposed with the problems of huge amount of remote sensing data, heavy server load caused by multi-user concurrent requests which decreased the transmission efficiency of remote sensing images. To improve the transmission efficiency, an Improved Ant Colony Optimization (IACO) algorithm was used, which introduced a line waiting factor γ to dynamically select the optimal transmission lines. Intercomparison experiments among IACO, Ant Colony Optimization (ACO), Max-min, Min-min, and Random algorithm were conducted and IACO algorithm finished the tasks in the client and executed in the server with the shortest time, and the larger the amount of tasks, the more obvious the effect. Besides, the line resource utilization of IACO was the highest. The simulation results show that: combining multi-line server block scheduling strategy with IACO algorithm can raise the speed of remote sensing image transmission and the utilization of line resource to some degree.