In order to improve the robustness of visual tracking algorithm when the target appearance changes rapidly, a particle filter tracking algorithm based on adaptive subspace learning was presented in this paper. In the particle filter framework, this paper established a state decision mechanism, chose the appropriate learning method by combining the verdict and the characteristics of the Principal Component Analysis (PCA) subspace and orthogonal subspace. It not only can accurately, stably learn target in low dimensional subspace, but also can quickly learn the change trend of the target appearance. For the occlusion problem, robust estimation techniques were added to avoid the impact of the target state estimation. The experimental results show that the algorithm has strong robustness in the case of illumination change, posture change, and occlusion.