Toggle navigation
Home
About
About Journal
Historical Evolution
Indexed In
Awards
Reference Index
Editorial Board
Journal Online
Archive
Project Articles
Most Download Articles
Most Read Articles
Instruction
Contribution Column
Author Guidelines
Template
FAQ
Copyright Agreement
Expenses
Academic Integrity
Contact
Contact Us
Location Map
Subscription
Advertisement
中文
Journals
Publication Years
Keywords
Search within results
(((WANG Shaohua[Author]) AND 1[Journal]) AND year[Order])
AND
OR
NOT
Title
Author
Institution
Keyword
Abstract
PACS
DOI
Please wait a minute...
For Selected:
Download Citations
EndNote
Ris
BibTeX
Toggle Thumbnails
Select
Clustering algorithm with maximum distance between clusters based on improved kernel fuzzy C-means
LI Bin, DI Lan, WANG Shaohua, YU Xiaotong
Journal of Computer Applications 2016, 36 (
7
): 1981-1987. DOI:
10.11772/j.issn.1001-9081.2016.07.1981
Abstract
(
403
)
PDF
(886KB)(
359
)
Knowledge map
Save
General kernel clustering only concern relationship within clusters while ignoring the issue between clusters. Misclassification easily occurs when clustering data sets with fuzzy and noisy boundaries. To solve this problem, a new clustering algorithm was proposed based on Kernel Fuzzy C-Means (KFCM) clustering algorithm, which was called Kernel Fuzzy C-Means with Maximum distance between clusters (MKFCM). Considering the relationship between within-cluster elements and between-cluster elements, a penalty term representing the distance between centers in feature space and a control parameter were introduced. In this way, the distance between clustering centers was broadened and the samples near boundaries were better classified. Compared with traditional clustering algorithms, the experiments results on simulated data sets show that the proposed algorithm reduces the offset distance of clustering centers obviously. On man-made Gaussian data sets, the ACCuracy (ACC), Normalized Mutual Information (NMI) and Rand Index (RI) of the proposed algorithm were improved to 0.9132, 0.7575 and 0.9138. The proposed algorithm shows its theoretical research significance on data sets with fuzzy and noisy boundaries.
Reference
|
Related Articles
|
Metrics
Select
Multi-dimensional fuzzy clustering image segmentation algorithm based on kernel metric and local information
WANG Shaohua, DI Lan, LIANG Jiuzhen
Journal of Computer Applications 2015, 35 (
11
): 3227-3231. DOI:
10.11772/j.issn.1001-9081.2015.11.3227
Abstract
(
536
)
PDF
(1025KB)(
525
)
Knowledge map
Save
In image segmentation based on clustering analysis, spatial constraints were imposed so as to reduce noise but preserve details. Based on Fuzzy C-Means (FCM) method, a multi-dimensional fuzzy clustering image segmentation algorithm based on kernel metric and local information was proposed to compromise noise and details in the image. In the algorithm, two extra images based on local information derived from the original one through a smoothing and a sharpening filter respectively were introduced to construct a multi-dimensional gray level vector to replace the original one-dimensional gray level. And then kernel method was employed to strengthen its robustness. In addition, a penalty term, which represents the diversity between local pixel and its neighbors, was used to modify the objective function so as to improve its anti-noise ability further. Compared with NNcut (Nystrom Normalized cut) and FLICM (Fuzzy Local Information C-Means), its segmentation accuracy achieved almost 99%. The experimental results on natural and medical images and parameter adjusting demonstrate its favorable advantages of flexibility and robustness when dealing with noise and details.
Reference
|
Related Articles
|
Metrics