The quality of low-light images is poor and Low-Light Image Enhancement (LLIE) aims to improve the visual quality. Most of LLIE algorithms focus on enhancing luminance and contrast, while neglecting details. To solve this issue, a Progressive Enhancement algorithm for low-light images based on Layer Guidance (PELG) was proposed, which enhanced algorithm images to a suitable illumination level and reconstructed clear details. First, to reduce the task complexity and improve the efficiency, the image was decomposed into several frequency components by Laplace Pyramid (LP) decomposition. Secondly, since different frequency components exhibit correlation, a Transformer-based fusion model and a lightweight fusion model were respectively proposed for layer guidance. The Transformer-based model was applied between the low-frequency and the lowest high-frequency components. The lightweight model was applied between two neighbouring high-frequency components. By doing so, components were enhanced in a coarse-to-fine manner. Finally, the LP was used to reconstruct the image with uniform brightness and clear details. The experimental results show that, the proposed algorithm achieves the Peak Signal-to-Noise Ratio (PSNR) 2.3 dB higher than DSLR (Deep Stacked Laplacian Restorer) on LOL(LOw-Light dataset)-v1 and 0.55 dB higher than UNIE (Unsupervised Night Image Enhancement) on LOL-v2. Compared with other state-of-the-art LLIE algorithms, the proposed algorithm has shorter runtime and achieves significant improvement in objective and subjective quality, which is more suitable for real scenes.
Concerning the large number of computing needs of vehicle task offloading and the limited computing capacity of local edge servers in the Internet of Vehicles (IoV), a Hierarchical Resource Allocation Mechanism of cooperative mobile edge computing (HRAM) was proposed. In this algorithm, the computing resources of Mobile Edge Computing (MEC) servers were reasonably allocated and effectively utilized with a multi-layer architecture,so that the data multi-hop forwarding delay between different MEC servers was reduced, and the delay of task offloading requests was optimized. Firstly, the system model, communication model, decision model, and calculation model of the IoV edge computing were built. Next, the Analytic Hierarchy Process (AHP) was used to comprehensively consider multiple factors to determine the target server the offloaded task transferred to. Finally, a task routing strategy with dynamic weights was proposed to make use of communication capabilities of the overall network to shorten the request delay of task offloading. Simulation results show that compared with Resource Allocation of Task Offloading in Single-hop (RATOS) algorithm and Resource Allocation of Task Offloading in Multi-hop (RATOM) algorithm, HRAM algorithm reduces the request delay of task offloading by 40.16% and 19.01% respectively, and this algorithm can satisfy the computing needs of more offloaded tasks under the premise of meeting the maximum tolerable delay.
In commercial digital cameras, due to the limitation of Complementary Metal Oxide Semiconductor (CMOS) sensors, there is only one color channel information for each pixel in the sampled image. Therefore, the Color image DeMosaicking (CDM) algorithm is required to restore the full-color images. However, most of the existing Convolutional Neural Network (CNN)-based CDM algorithms cannot achieve satisfactory performance with relatively low computational complexity and small network parameter number. To solve this problem, a CDM network based on Inter-channel Correlation and Enhanced Information Distillation (ICEID) was proposed. Firstly, to fully utilize the inter-channel correlation of the color image, an inter-channel guided reconstruction structure was designed to obtain the initial CDM result. Secondly, an Enhanced Information Distillation Module (EIDM), which can effectively extract and refine features from image with relatively small parameter number, was presented to enhance the reconstructed full-color image in high efficiency. Experimental results demonstrate that compared with many state-of-the-art CDM methods, the proposed algorithm achieves significant improvement in both objective quality and subjective quality, and has relatively low computational complexity and small network parameter number.
Focusing on the issue that the Signal-to-Clutter-and-Noise Ratio (SCNR) of echo signal is low when cognitive radar detects extended target, a waveform design method based on SCNR was proposed. Firstly, the relation between the SCNR of cognitive radar echo signal and the Energy Spectral Density (ESD) of transmitted signal, was gotten by establishing extended target detection model other than previous point target model; secondly, according to the maximum SCNR criterion, the global optimal solution of the transmitted signal ESD was deduced; finally, in order to get a meaningful time-domain signal, ESD was synthesized to be a constant amplitude based on phase-modulation after combining with the Minimum Mean-Square Error (MMSE) and iterative algorithm, which met the emission requirements of radar. In the simulation, the amplitude of time-domain synthesized signal is uniform, and its SCNR at the output of the matched filter is 19.133 dB, only 0.005 dB less than the ideal value. The results show that not only can the time-domain waveform meet the requirement of constant amplitude, but also the SCNR obtained at receiver output can achieve the best approximation to the ideal value, and it improves the performance of the extended target detection.
Concerning the problem that the weak target might be covered by the range side-lobes of the strong one and the range side-lobes could only be suppressed to a certain value, an improved Kalman-Minimum Mean-Square Error (K-MMSE) algorithm was proposed in this paper. This algorithm combined the Kalman filter with the Minimum Mean-Square Error (MMSE), and it was an effective method for suppressing range side-lobes of adaptive pulse compression. In the simulation, the proposed algorithm was compared with the traditional matched filter and other improved matched filters such as MMSE in a single target or multiple targets environments, and then found that the side-lobe levels, the Peak-SideLobe Ratio (PSLR) and Integrated SideLobe Ratio (ISLR) of the Point Spread Function (PSF) were all decreased obviously in comparison with the previous two methods. The simulation results show that the method can suppress range side-lobes well and detect the weak targets well either under both the condition of a single target and the condition of multiple targets.