To solve the problem of detecting human hand in complex background based on traditional camera, a fast, automatic method was proposed which can accurately detect and track foreground human fingertips by using Kinect camera. This method firstly used a combined vision-based information to roughly extract the hand region, then, by taking advantage of depth information, a bare hand could be successfully segmented without connecting to background. Subsequently, the fingertips of that bare hand could be extracted by using minimum circle and curvature relationship on the hand boundary. Finally, to improve the detecting accuracy, the fingertips were optimized by using Kalman filter. The experimental results show that compared with existing method the algorithm can successfully track the 3D locations of fingertips under multiple hand poses and with much lower error rate.
To effectively capture the dynamic information of the gait and accelerate the authentication and identification, a novel gait recognition algorithm was presented in this paper, which employed the row mass vector of the Frame Difference Energy Image (FDEI) as the gait features. The gait contour images were extracted through the object detection, binarization, morphological process and connectivity analysis of the original images. Using the width of the contour images sequence, the quasi-periodicity analysis and the row mass vector of the frame difference image were obtained, then the Continuous Hidden Markov Model (CHMM) was employed to train and recognize the parameters of model. The proposed algorithm was applied to Central Asia Student International Academic (CASIA) gait database. The experimental results show that it can easily extract the features of the gait with low dimension, achieving fast recognition speed and high recognition rate, so it can be used for real-time gait recognition.
To realize automatic and quantitative assessment in home-based upper extremity rehabilitation for stroke, an Extreme Learning Machine (ELM) based prediction model was proposed to automatically estimate the Fugl-Meyer Assessment (FMA) scale score for shoulder-elbow section. Two accelerometers were utilized for data recording during performance of 4 tasks selected from shoulder-elbow FMA and 24 patients were involved in the study. Accelerometer-based estimation was obtained by preprocessing raw sensor data, extracting data features, selecting features based on Genetic Algorithm and ELM. Then 4 single-task models and a comprehensive model were built individually using the selected features. Results show that it is possible to achieve accurate estimation of shoulder-elbow FMA score from the analysis of accelerometer sensor data with a root mean squared prediction error value of 2.1849 points. This approach breaks through the subjective and time-consuming property of traditional outcome measures which rely on clinicians at hand and can be easily utilized in the home settings.