Concerning the poor privacy and flexibility of traditional lifetime estimation for human motion, a lifetime estimation system for human motion was proposed, by analyzing the amplitude variation of WiFi Channel State Information (CSI). In this system, the continuous and complex lifetime estimation problem was transformed into a discrete and simple human motion detection problem. Firstly, the CSI was collected with filtering out the outliers and noise. Secondly, Principal Component Analysis (PCA) was used to reduce the dimension of subcarriers, obtaining the principal components and the corresponding eigenvectors. Thirdly, the variance of principal components and the mean of first difference of eigenvectors were calculated, and a Back Propagation Neural Network (BPNN) model was trained with the ratio of above two parameters as eigenvalue. Fourthly, human motion detection was achieved by the trained BP neural network model, and the CSI data were divided into some segments with equal width when the human motion was detected. Finally, after the human motion detection being performed on all CSI segments, the human motion lifetime was estimated according to the number of CSI segments with human motion detected. In real indoor environment, the average accuracy of human motion detection can reach 97% and the error rate of human motion lifetime is less than 10%. The experimental results show that the proposed system can effectively estimate the lifetime of human motion.