Journals
  Publication Years
  Keywords
Search within results Open Search
Please wait a minute...
For Selected: Toggle Thumbnails
Animation video generation model based on Chinese impressionistic style transfer
Wentao MAO, Guifang WU, Chao WU, Zhi DOU
Journal of Computer Applications    2022, 42 (7): 2162-2169.   DOI: 10.11772/j.issn.1001-9081.2021050836
Abstract702)   HTML20)    PDF (5691KB)(283)       Save

At present, Generative Adversarial Network (GAN) has been used for image animation style transformation. However, most of the existing GAN-based animation generation models mainly focus on the extraction and generation of realistic style with the targets of Japanese animations and American animations. Very little attention of the model is paid to the transfer of impressionistic style in Chinese-style animations, which limits the application of GAN in the domestic animation production market. To solve the problem, a new Chinese-style animation GAN model, namely Chinese Cartoon GAN (CCGAN), was proposed for the automatic generation of animation videos with Chinese impressionistic style by integrating Chinese impressionistic style into GAN model. Firstly, by adding the inverted residual blocks into the generator, a lightweight deep neural network model was constructed to reduce the computational cost of video generation. Secondly, in order to extract and transfer the characteristics of Chinese impressionistic style, such as sharp image edges, abstract content structure and stroke lines with ink texture, the gray-scale style loss and color reconstruction loss were constructed in the generator to constrain the high-level semantic consistency in style between the real images and the Chinese-style sample images. Moreover, in the discriminator, the gray-scale adversarial loss and edge-promoting adversarial loss were constructed to constrain the reconstructed image for maintaining the same edge characteristics of the sample images. Finally, the Adam algorithm was used to minimize the above loss functions to realize style transfer, and the reconstructed images were combined into video. Experimental results show that, compared with the current representative style transfer models such as CycleGAN and CartoonGAN, the proposed CCGAN can effectively learn the Chinese impressionistic style from Chinese-style animations such as Chinese Choir and significantly reduce the computational cost, indicating that the proposed CCGAN is suitable for the rapid generation of animation videos with large quantities.

Table and Figures | Reference | Related Articles | Metrics