[1] MACQUEEN J B. Some methods for classification and analysis of multivariate observations[C]// Proceedings of the 5th Berkeley Symposium on Mathematical Statistics and Probability. Berkeley: University of California Press, 1967:281-297. [2] ZHANG T, RAMAKRISHNAN R, LIVNY M. BIRCH: an efficient data clustering method for very large databases[J]. Data Mining and Knowledge Discovery, 1997,1(2):141-182. [3] ESTER M, KRIEGEL H P, SANDER J, et al. A density-based algorithm for discovering clusters in large spatial databases with noise [C]// Proceedings of the 2nd International Conference on Knowledge Discovery and Data Mining. Menlo Park: AAAI Press,1996:226-231. [4] ANKERST M, BREUNIG M, KRIEGEL H P, et al. OPTICS: ordering points to identify the clustering structure[C]// Proceedings of the ACM SIGMOD 1999 International Conference on Management of Data. New York: ACM, 1999: 49-60. [5] ZENG Y, XU H, BAI S. OPTICS-plus for text clustering[J]. Journal of Chinese Information Processing, 2008,22(1):51-55,60. (曾依灵,许洪波,白硕.改进的OPTICS算法及其在文本聚类中的应用[J].中文信息学报,2008,22(1):51-55,60.) [6] HYOTYNIEMI H. Text document classification with self-organizing maps[C]// Proceedings of Finnish Artificial Intelligence Conference Genes, Nets and Symbols. Vaasa: the Finnish Artificial Intelligence Society and University of Vaasa, 1996:64-72. [7] LIU Y, WU C, LIU M. Research of fast SOM clustering for text information[J]. Knowledge-Based Systems,2011,38(8): 9325-9333. [8] HE T, DAI W, JIAO C. Research of text clustering based on hybrid parallel genetic algorithm[J].Journal of Chinese Information Processing, 2007,21(4):55-60. (何婷婷,戴文华,焦翠珍.基于混合并行遗传算法的文本聚类研究[J].中文信息学报,2007,21(4):55-60.) [9] JAMAL A N, IRAKLIS V, ASIM K, et al. Semantic smoothing for text clustering[J]. Knowledge-Based Systems,2013,54(4): 216-229. [10] PENG J, YANG D, TANG S,et al. A novel text clustering algorithm based on inner product space model of semantic[J]. Chinese Journal of Computers,2007,30(8):1354-1363.(彭京,杨冬青,唐世渭,等.一种基于语义内积空间模型的文本聚类算法[J].计算机学报,2007,30(8):1354-1363.) [11] LUO N, ZUO W, YUAN F, et al.Using ontology semantics to improve text documents clustering[J].Journal of Southeast University: English Edition,2006,22(3):370-374. [12] ZHU H, ZUO W, HE F,et al. A novel text clustering method based on Ontology[J]. Journal of Jilin University: Science Edition,2010, 48(2):277-283.(朱会峰,左万利,赫枫龄,等.一种基于本体的文本聚类方法[J].吉林大学学报:理学版,2010,48(2):277-283.) [13] YAN Y, CHEN L, TJHI W C. Fuzzy semi-supervised co-clustering for text documents[J].Fuzzy Sets and Systems,2013,215(3): 74-89. [14] WEI S, JIU Z, SOON C P. Fuzzy control GA with a novel hybrid semantic similarity strategy for text clustering[J]. Information Sciences,2014,273(3): 156-170. [15] XU S, LU Z, GU G. Spectral clustering algorithms for document cluster ensemble problem[J]. Journal on Communications, 2010, 31(6):58-66. (徐森,卢志茂,顾国昌.使用谱聚类算法解决文本聚类集成问题[J].通信学报,2010,31(6):58-66.) [16] ZOU Z, TIAN S, YU L, et al. An improved Uyghur Web text clustering based on suffix tree[J].Journal of Chinese Information Processing,2013,27(2):118-126.(邹志华,田生伟,禹龙,等.改进的维吾尔语Web文本后缀树聚类[J].中文信息学报,2013,27(2):118-126.) [17] YAO M, PI D, CONG X. Chinese text clustering algorithm based k-means[J]. Physics Procedia,2012, 33: 301-307. [18] WANG M, FU J, LUO Y, et al. Two-stage text clustering based on collaborative clustering[J]. Pattern Recognition and Artificial Intelligence, 2009, 22(6):848-853.(王明文,付剑波,罗远胜,等.基于协同聚类的两阶段文本聚类方法[J].模式识别与人工智能,2009,22(6):848-853.) [19] BHARTI K K, SINGH P K. A three-stage unsupervised dimension reduction method for text clustering[J]. Journal of Computational Science,2014,5(2):156-169. [20] GONG L, ZENG J, ZHANG S. Text stream clustering algorithm based on adaptive feature selection[J].Expert Systems with Applications,2011,38(3):1393-1399. [21] WANG X, HU Z, GU Q. A novel approach for text similarity computing based on random n-Grams [J]. Journal of the China Society for Scientific and Technical Information,2013,32(7): 716-723.(王贤明,胡智文,谷琼.一种基于随机n-Grams的文本相似度计算方法[J].情报学报,2013,32(7): 716-723.) [22] FUNG B C M,WANG K, ESTER M. Hierarchical document clustering using frequent itemsets[C]// Proceedings of the 3rd SIAM International Conference on Data Mining. Piscataway: IEEE,2003: 59-70. [23] ZHANG W, YOSHIDA T, TANG X,et al. Text clustering using frequent itemsets[J]. Knowledge-Based Systems,2010,23(5):379-388. |